Revealing novel synergistic defense and acid tolerant performance of Escherichia coli in response to organic acid stimulation

Aiso T, Kamiya S, Yonezawa H, Gamou S (2014) Overexpression of an antisense RNA, ArrS, increases the acid resistance of Escherichia coli. Microbiol-Sgm 160:954–961

Article  CAS  Google Scholar 

Beckwith JR, Pardee AB, Austrian R, Jacob F (1962) Coordination of the synthesis of the enzymes in the pyrimidine pathway of E. coli. J Mol Biol 5:618–634. https://doi.org/10.1016/s0022-2836(62)80090-4

Article  CAS  PubMed  Google Scholar 

Chen YX, Boggess EE, Ocasio ER, Warner A, Kerns L, Drapal V, Gossling C, Ross W, Gourse RL, Shao ZY, Dickerson J, Mansell TJ, Jarboe LR (2020) Reverse engineering of fatty acid-tolerant Escherichia coli identifies design strategies for robust microbial cell factories. Metab Eng 61:120–130. https://doi.org/10.1016/j.ymben.2020.05.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cruz DP, Huertas MG, Lozano M, Zarate L, Zambrano MM (2012) Comparative analysis of diguanylate cyclase and phosphodiesterase genes in Klebsiella pneumoniae. Bmc Microbiol 12:1–9. https://doi.org/10.1186/1471-2180-12-139

Deng Y, Ma N, Zhu KJ, Mao Y, Wei XT, Zhao YY (2018) Balancing the carbon flux distributions between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in Escherichia coli. Metab Eng 46:28–34

Article  CAS  PubMed  Google Scholar 

Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol R 70:939-+. https://doi.org/10.1128/Mmbr.00024-06

Eguchi Y, Ishii E, Hata K, Utsumi R (2011) Regulation of acid resistance by connectors of two-component signal transduction systems in Escherichia coli. J Bacteriol 193:1222–1228

Article  CAS  PubMed  Google Scholar 

Eklund T (1983) The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J Appl Bacteriol 54:383–389

Article  CAS  PubMed  Google Scholar 

Ersoy ZG, Barisci S, Dinc O (2019) Mechanisms of the Escherichia coli and Enterococcus faecalis inactivation by ozone. Lwt-Food Sci Technol 100:306–313. https://doi.org/10.1016/j.lwt.2018.10.095

Article  CAS  Google Scholar 

Firczuk M, Bochtler M (2007) Folds and activities of peptidoglycan amidases. Fems Microbiol Rev 31:676–691. https://doi.org/10.1111/j.1574-6976.2007.00084.x

Article  CAS  PubMed  Google Scholar 

Fletcher E, Feizi A, Bisschops MMM, Hallstrom BM, Khoomrung S, Siewers V, Nielsen J (2017) Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments. Metab Eng 39:19–28. https://doi.org/10.1016/j.ymben.2016.10.010

Article  CAS  PubMed  Google Scholar 

Fu XM, Wang YX, Wang JH, Garza E, Manow R, Zhou SD (2017) Semi-industrial scale (30 m(3)) fed-batch fermentation for the production of D-lactate by Escherichia coli strain HBUT-D15. J Ind Microbiol Biot 44:221–228. https://doi.org/10.1007/s10295-016-1877-9

Article  CAS  Google Scholar 

Gaida SM, Al-Hinai MA, Indurthi DC, Nicolaou SA, Papoutsakis ET (2013) Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress. Nucleic Acids Res 41:8726–8737. https://doi.org/10.1093/nar/gkt651

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garavaglia M, Rossi E, Landini P (2012) The pyrimidine nucleotide biosynthetic pathway modulates production of biofilm determinants in Escherichia coli. PLoS One 7:e31252. https://doi.org/10.1371/journal.pone.0031252

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grabar T, Gong W, Yocum RR (2018) Metabolic evolution of Escherichia coli strains that produce organic acids (No. 10,017,793). Myriant Corporation, Woburn, MA (United States).

Guan NZ, Liu L (2020) Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biot 104:51–65. https://doi.org/10.1007/s00253-019-10226-1

Article  CAS  Google Scholar 

Guan NZ, Liu L, Shin HD, Chen RR, Zhang J, Li JH, Du GC, Shi ZP, Chen J (2013) Systems-level understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the microenvironment levels: Mechanism and application. J Biotechnol 167:56–63. https://doi.org/10.1016/j.jbiotec.2013.06.008

Article  CAS  PubMed  Google Scholar 

Gurnani Serrano CK, Winkle M, Martorana AM, Biboy J, More N, Moynihan P, Banzhaf M, Vollmer W, Polissi A (2021) ActS activates peptidoglycan amidases during outer membrane stress in Escherichia coli. Mol Microbiol 116:329–342. https://doi.org/10.1111/mmi.14712

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsu YP, Meng X, VanNieuwenhze MS (2016) Methods for visualization of peptidoglycan biosynthesis. Imaging Bacterial Mol, Struct Cells 43:3–48. https://doi.org/10.1016/bs.mim.2016.10.004

Article  CAS  Google Scholar 

Joseph TC, Rajan LA, Thampuran N, James R (2010) Functional characterization of trehalose biosynthesis genes from E. coli: an osmolyte involved in stress tolerance. Mol Biotechnol 46:20–25. https://doi.org/10.1007/s12033-010-9259-4

Article  CAS  PubMed  Google Scholar 

Kleanthous C, Armitage JP (2015) The bacterial cell envelope. Philos T R Soc B 370.ARTN 20150019. https://doi.org/10.1098/rstb.2015.0019

Koebnik R, Locher KP, Van Gelder P (2000) Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37:239–253. https://doi.org/10.1046/j.1365-2958.2000.01983.x

Article  CAS  PubMed  Google Scholar 

Kohanski MA, Dwyer DJ, Wierzbowski J, Cottarel G, Collins JJ (2008) Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135:679–690. https://doi.org/10.1016/j.cell.2008.09.038

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kudva R, Denks K, Kuhn P, Vogt A, Muller M, Koch HG (2013) Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res Microbiol 164:505–534. https://doi.org/10.1016/j.resmic.2013.03.016

Article  CAS  PubMed  Google Scholar 

Li ZD, Jiang BY, Zhang XY, Yang Y, Hardwidge PR, Ren WK, Zhu GQ (2020) The role of bacterial cell envelope structures in acid stress resistance in E. coli. Appl Microbiol Biot 104:2911–2921. https://doi.org/10.1007/s00253-020-10453-x

Article  CAS  Google Scholar 

Little K, Tipping MJ, Gibbs KA (2018) Swarmer Cell Development of the Bacterium Proteus mirabilis Requires the Conserved Enterobacterial Common Antigen Biosynthesis Gene rffG. J Bacteriol 200:e00230–18. https://doi.org/10.1128/JB.00230-18

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Article  CAS  PubMed  Google Scholar 

Lu PL, Ma D, Chen YL, Guo YY, Chen GQ, Deng HT, Shi YG (2013) L-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia. Cell Res 23:635–644

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matias VRF, Al-Amoudi A, Dubochet J, Beveridge TJ (2003) Cryo-transmission electron Microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J Bacteriol 185:6112–6118. https://doi.org/10.1128/Jb.185.20.6112-6118.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matson MM, Cepeda MM, Zhang A, Case AE, Kavvas ES, Wang X, Carroll AL, Tagkopoulos I, Atsumi S (2022) Adaptive laboratory evolution for improved tolerance of isobutyl acetate in Escherichia coli. Metab Eng 69:50–58. https://doi.org/10.1016/j.ymben.2021.11.002

Article  CAS  PubMed  Google Scholar 

Nguyen DTT, Praveen P, Loh KC (2018) Zymomonas mobilis immobilization in polymeric membranes for improved resistance to lignocellulose-derived inhibitors in bioethanol fermentation. Biochem Eng J 140:29–37. https://doi.org/10.1016/j.bej.2018.09.003

Article  CAS  Google Scholar 

Nguyen HT, O'Donovan LA, Venter H, Russell CC, McCluskey A, Page SW, Trott DJ, Ogunniyi AD (2021) Comparison of two transmission electron microscopy methods to visualize drug-induced alterations of gram-negative bacterial morphology. Antibiotics-Basel 10.ARTN 307. https://doi.org/10.3390/antibiotics10030307

Niazy A, Hughes LE (2015) Accumulation of pyrimidine intermediate orotate decreases virulence factor production in Pseudomonas aeruginosa. Curr Microbiol 71:229–234

Article  CAS  PubMed  Google Scholar 

Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol R 67: 593–656. https://doi.org/10.1128/Mmbr.67.4.593-656.2003

O’Donovan GA, Neuhard J (1970) Pyrimidine metabolism in microorganisms. Bacteriol Rev 34:278–343

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng S, Stephan R, Hummerjohann J, Tasara T (2014) Transcriptional analysis of different stress response genes in Escherichia coli strains subjected to sodium chloride and lactic acid stress. Fems Microbiol Lett 361:131–137. https://doi.org/10.1111/1574-6968.12622

Article  CAS  PubMed  Google Scholar 

Pereira R, Wei YJ, Mohamed E, Radi M, Malina C, Herrgard MJ, Feist AM, Nielsen J, Chen Y (2019) Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae. Metab Eng 56:130–141. https://doi.org/10.1016/j.ymben.2019.09.008

Article  CAS  PubMed  Google Scholar 

Pham HL, Wong A, Chua N, Teo WS, Yew WS, Chang MW (2017) Engineering a riboswitch-based genetic platform for the self-directed evolution of acid-tolerant phenotypes. Nat Commun 8.ARTN 411. https://doi.org/10.1038/s41467-017-00511-w

Pienaar JA, Singh A, Barnard TG (2020) Membrane modification as a survival mechanism through gastric fluid in non-acid adapted enteropathogenic Escherichia coli (EPEC). Microb Pathogenesis 144.ARTN 104180. https://doi.org/10.1016/j.micpath.2020.104180

Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate - carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594. https://doi.org/10.1128/Mmbr.57.3.543-594.1993

Rao TVP, Kuzminov A (2020) Exopolysaccharide defects cause hyper-thymineless death in Escherichia coli via massive loss of chromosomal DNA and cell lysis. Proc Natl Acad Sci U S A 117:33549–33560. https://doi.org/10.1073/pnas.2012254117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roe AJ, O'Byrne C, McLaggan D, Booth IR (2002) Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology+ 148: 2215–2222. https://doi.org/10.1099/00221287-148-7-2215

Roghanian M, Semsey S, Lobner-Olesen A, Jalalvand F (2019) (p)ppGpp-mediated stress response induced by defects in outer membrane biogenesis and ATP production promotes survival in Escherichia coli. Sci Rep 9:2934. https://doi.org/10.1038/s41598-019-39371-3

Article  CAS 

留言 (0)

沒有登入
gif