Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications

Hanahan D, Weinberg R. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

Article  CAS  PubMed  Google Scholar 

Pavlova N, Zhu J, Thompson C. The hallmarks of cancer metabolism: still emerging. Cell Metab. 2022;34(3):355–77.

Article  CAS  PubMed  Google Scholar 

Lunt S, Vander HM. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64.

Article  CAS  PubMed  Google Scholar 

Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.

Article  CAS  PubMed  Google Scholar 

Birts C, Banerjee A, Darley M, Dunlop C, Nelson S, Nijjar S, et al. p53 is regulated by aerobic glycolysis in cancer cells by the CtBP family of NADH-dependent transcriptional regulators. Sci Signal. 2020. https://doi.org/10.1126/scisignal.aau9529.

Article  PubMed  PubMed Central  Google Scholar 

Li W, Tanikawa T, Kryczek I, Xia H, Li G, Wu K, et al. Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a Specific CEBPB Isoform in triple-negative breast cancer. Cell Metab. 2018;28(1):87-103.e6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dekker E, Tanis P, Vleugels J, Kasi P, Wallace M. Colorectal cancer. Lancet. 2019;394(10207):1467–80.

Article  PubMed  Google Scholar 

Siegel R, Miller K, Fuchs H, Jemal A. Cancer statistics,2022. CA Cancer J Clin. 2022;72(1):7–33.

Article  PubMed  Google Scholar 

Pan Z, Peng J, Lin J, Chen G, Wu X, Lu Z, et al. Is there a survival benefit from adjuvant chemotherapy for patients with liver oligometastases from colorectal cancer after curative resection? Cancer Commun. 2018;38(1):29.

Article  Google Scholar 

Akgül Ö, Çetinkaya E, Ersöz Ş, Tez M. Role of surgery in colorectal cancer liver metastases. World J Gastroenterol. 2014;20(20):6113–22.

Article  PubMed  PubMed Central  Google Scholar 

Al Bandar M, Kim N. Current status and future perspectives on treatment of liver metastasis in colorectal cancer. Oncol Rep. 2017;37(5):2553–64.

Article  CAS  PubMed  Google Scholar 

Takahashi H, Berber E. Role of thermal ablation in the management of colorectal liver metastasis. Hepatobiliary Surg Nutr. 2020;9(1):49–58.

Article  PubMed  PubMed Central  Google Scholar 

Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 2015;13:45.

Article  PubMed  PubMed Central  Google Scholar 

Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8(5):761–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han L, Lam E, Sun Y. Extracellular vesicles in the tumor microenvironment: old stories, but new tales. Mol Cancer. 2019;18(1):59.

Article  PubMed  PubMed Central  Google Scholar 

Kumagai S, Koyama S, Itahashi K, Tanegashima T, Lin Y, Togashi Y, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 2022;40(2):201-18.e9.

Article  CAS  PubMed  Google Scholar 

Navale A, Paranjape A. Glucose transporters: physiological and pathological roles. Biophys Rev. 2016;8(1):5–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ciscato F, Ferrone L, Masgras I, Laquatra C, Rasola A. Hexokinase 2 in cancer: a prima donna playing multiple characters. Int J Mol Sci. 2021;22(9):4716.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson J. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol. 2003;206:2049–57.

Article  CAS  PubMed  Google Scholar 

Jiang M, Liu S, Lin J, Hao W, Wei B, Gao Y, et al. A pan-cancer analysis of molecular characteristics and oncogenic role of hexokinase family genes in human tumors. Life Sci. 2021;264:118669.

Article  CAS  PubMed  Google Scholar 

Lee H, Li C, Ruan D, He J, Montal E, Lorenz S, et al. Non-proteolytic ubiquitination of Hexokinase 2 by HectH9 controls tumor metabolism and cancer stem cell expansion. Nat Commun. 2019;10(1):2625.

Article  PubMed  PubMed Central  Google Scholar 

Xu S, Herschman H. A tumor agnostic therapeutic strategy for Hexokinase 1-Null/Hexokinase 2-positive cancers. Can Res. 2019;79(23):5907–14.

Article  CAS  Google Scholar 

Nishihashi K, Kawashima K, Nomura T, Urakami-Takebayashi Y, Miyazaki M, Takano M, et al. Cobalt chloride induces expression and function of breast cancer resistance protein (BCRP/ABCG2) in human renal proximal tubular epithelial cell line HK-2. Biol Pharm Bull. 2017;40(1):82–7.

Article  CAS  PubMed  Google Scholar 

Xu S, Catapang A, Braas D, Stiles L, Doh H, Lee J, et al. A precision therapeutic strategy for hexokinase 1-null, hexokinase 2-positive cancers. Cancer Metab. 2018;6:7.

Article  PubMed  PubMed Central  Google Scholar 

Shi T, Ma Y, Cao L, Zhan S, Xu Y, Fu F, et al. B7–H3 promotes aerobic glycolysis and chemoresistance in colorectal cancer cells by regulating HK2. Cell Death Dis. 2019;10(4):308.

Article  PubMed  PubMed Central  Google Scholar 

Yuan S, Fu Y, Wang X, Shi H, Huang Y, Song X, et al. Voltage-dependent anion channel 1 is involved in endostatin-induced endothelial cell apoptosis. FASEB J Off Publ Fed Am Soc Exp Biol. 2008;22(8):2809–20.

CAS  Google Scholar 

Neary C, Pastorino J. Akt inhibition promotes hexokinase 2 redistribution and glucose uptake in cancer cells. J Cell Physiol. 2013;228(9):1943–8.

Article  CAS  PubMed  Google Scholar 

Yalcin A, Telang S, Clem B, Chesney J. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp Mol Pathol. 2009;86(3):174–9.

Article  CAS  PubMed  Google Scholar 

Mor I, Cheung E, Vousden K. Control of glycolysis through regulation of PFK1: old friends and recent additions. Cold Spring Harb Symp Quant Biol. 2011;76:211–6.

Article  CAS  PubMed  Google Scholar 

Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z, et al. High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Can Res. 2002;62(20):5881–7.

CAS  Google Scholar 

Okar D, Manzano A, Navarro-Sabatè A, Riera L, Bartrons R, Lange A. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem Sci. 2001;26(1):30–5.

Article  CAS  PubMed  Google Scholar 

Bartrons R, Simon-Molas H, Rodríguez-García A, Castaño E, Navarro-Sabaté À, Manzano A, et al. Fructose 2,6-bisphosphate in cancer cell metabolism. Front Oncol. 2018;8:331.

Article  PubMed  PubMed Central  Google Scholar 

Sakakibara R, Kato M, Okamura N, Nakagawa T, Komada Y, Tominaga N, et al. Characterization of a human placental fructose-6-phosphate, 2-kinase/fructose-2,6-bisphosphatase. J Biochem. 1997;122(1):122–8.

Article  CAS  PubMed  Google Scholar 

Kotowski K, Rosik J, Machaj F, Supplitt S, Wiczew D, Jabłońska K, et al. Role of PFKFB3 and PFKFB4 in cancer: genetic basis, impact on disease development/progression, and potential as therapeutic targets. Cancers. 2021. https://doi.org/10.3390/cancers13040909.

Article  PubMed  PubMed Central  Google Scholar 

Akram M. Mini-review on glycolysis and cancer. J Cancer Educ Off J Am Assoc Cancer Educ. 2013;28(3):454–7.

CAS  Google Scholar 

Chhipa A, Patel S. Targeting pyruvate kinase muscle isoform 2 (PKM2) in cancer: what do we know so far? Life Sci. 2021;280:119694.

Article  CAS  PubMed  Google Scholar 

Israelsen W, Vander HM. Pyruvate kinase: function, regulation and role in cancer. Semin Cell Dev Biol. 2015;43:43–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tamada M, Suematsu M, Saya H. Pyruvate kinase M2: multiple faces for conferring benefits on cancer cells. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18(20):5554–61.

Article  CAS 

留言 (0)

沒有登入
gif