Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy

Liu Y, et al. Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther. 2023;8(1):104.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020;70(2):86–104.

Article  PubMed  Google Scholar 

Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015;14(8):561–84.

Article  CAS  PubMed  Google Scholar 

Webster RM. The immune checkpoint inhibitors: where are we now? Nat Rev Drug Discov. 2014;13(12):883–4.

Article  CAS  PubMed  Google Scholar 

Zhang Q, et al. Immune and Clinical features of CD96 expression in Glioma by in silico analysis. Front Bioeng Biotechnol. 2020;8:592.

Article  PubMed  PubMed Central  Google Scholar 

Galipeau J, Sensébé L. Mesenchymal stromal cells: Clinical challenges and Therapeutic opportunities. Cell Stem Cell. 2018;22(6):824–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liotta F, et al. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing notch signaling. Stem Cells. 2008;26(1):279–89.

Article  CAS  PubMed  Google Scholar 

Majeti R, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138(2):286–99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barkal AA, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019;572(7769):392–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gordon SR, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545(7655):495–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barkal AA, et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol. 2018;19(1):76–84.

Article  CAS  PubMed  Google Scholar 

Lin H, et al. Stanniocalcin 1 is a phagocytosis checkpoint driving tumor immune resistance. Cancer Cell. 2021;39(4):480–e4936.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Theruvath J, et al. Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nat Med. 2022;28(2):333–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gardner A, de Mingo Á, Pulido, Ruffell B. Dendritic cells and their role in Immunotherapy. Front Immunol. 2020;11:924.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.

Article  PubMed  Google Scholar 

Nakayama M. Antigen Presentation by MHC-Dressed cells. Front Immunol. 2014;5:672.

PubMed  Google Scholar 

Lin A, Loré K. Granulocytes: New members of the Antigen-presenting cell family. Front Immunol. 2017;8:1781.

Article  PubMed  PubMed Central  Google Scholar 

Broz ML, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell. 2014;26(5):638–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 2019;19(6):369–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer Cell. 2015;27(4):462–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sánchez-Paulete AR, et al. Cancer Immunotherapy with Immunomodulatory Anti-CD137 and Anti-PD-1 monoclonal antibodies requires BATF3-Dependent dendritic cells. Cancer Discov. 2016;6(1):71–9.

Article  PubMed  Google Scholar 

Hildner K, et al. Batf3 deficiency reveals a critical role for CD8alpha + dendritic cells in cytotoxic T cell immunity. Science. 2008;322(5904):1097–100.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roberts EW, et al. Critical role for CD103(+)/CD141(+) dendritic cells bearing CCR7 for Tumor Antigen Trafficking and priming of T cell immunity in Melanoma. Cancer Cell. 2016;30(2):324–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salmon H, et al. Expansion and activation of CD103(+) dendritic cell progenitors at the Tumor Site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity. 2016;44(4):924–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Pulido M. TIM-3 regulates CD103(+) dendritic cell function and response to chemotherapy in breast Cancer. Cancer Cell. 2018;33(1):60–74.e6.

Article  CAS  Google Scholar 

Garris CS, et al. Successful Anti-PD-1 Cancer Immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity. 2018;49(6):1148–e11617.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spranger S, et al. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell. 2017;31(5):711–e7234.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chow MT, et al. Intratumoral Activity of the CXCR3 chemokine system is required for the efficacy of Anti-PD-1 therapy. Immunity. 2019;50(6):1498–e15125.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xia Y, et al. Engineering macrophages for Cancer Immunotherapy and Drug Delivery. Adv Mater. 2020;32(40):e2002054.

Article  PubMed  Google Scholar 

Gao J, Liang Y, Wang L. Shap Polarization Tumor-Associated Macrophages Cancer Immunotherapy Front Immunol. 2022;13:888713.

CAS  Google Scholar 

Kumari N, Choi SH. Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res. 2022;41(1):68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li L, Ma SR, Yu ZL. Targeting the lipid metabolic reprogramming of tumor-associated macrophages: a novel insight into cancer immunotherapy. Cell Oncol (Dordr); 2023.

Pei L, et al. Roles of cancer-associated fibroblasts (CAFs) in anti- PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer. 2023;22(1):29.

Article  PubMed  PubMed Central  Google Scholar 

Zhang H, et al. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer. 2023;22(1):159.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raskov H, et al. Cancer-Associated fibroblasts and Tumor-Associated macrophages in Cancer and Cancer Immunotherapy. Front Oncol. 2021;11:668731.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thiery J. Modulation of the antitumor immune response by cancer-associated fibroblasts: mechanisms and targeting strategies to hamper their immunosuppressive functions. Explor Target Antitumor Ther. 2022;3(5):598–629.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Q, et al. Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med. 2023;12(10):11149–65.

Article  PubMed  PubMed Central  Google Scholar 

Han S et al. Tumor Microenvironment Regulation and Cancer Targeting Therapy based on nanoparticles. J Funct Biomater, 2023. 14(3).

Li Z, Yin P. Tumor microenvironment diversity and plasticity in cancer multidrug resistance. Biochim Biophys Acta Rev Cancer. 2023

留言 (0)

沒有登入
gif