Nasir, M., Nawaz, M.H., Yaqub, M., Hayat, A., Rahim, A.: An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim. Acta. 184(2), 323–342 (2017)
Lin, L.P., Song, X.H., Chen, Y.Y., Rong, M.C., Zhao, T.T., Wang, Y.R., Chen, X.: Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose. Anal. Chim. Acta. 869, 89–95 (2015)
Liao, H., Liu, G.J., Liu, Y., Li, R., Fu, W.S., Hu, L.Z.: Aggregation induced accelerating peroxidase-like activity of gold nanoclusters and their applications for colorimetric Pb2+ detection. Chem. Commun. 53, 10160–10163 (2017)
Liao, H., Hu, L.Z., Zhang, Y.Z., Yu, X.R., Liu, Y.L., Li, R.: A highly selective colorimetric sulfide assay based on the inhibition of the peroxidase-like activity of copper nanoclusters. Microchim. Acta. 185, 143 (2018)
Hu, L.Z., Liao, H., Feng, L.Y., Wang, M., Fu, W.S.: Accelerating the peroxidase-like activity of gold nanoclusters at neutral pH for colorimetric detection of heparin and heparinase activity. Anal. Chem. 90(10), 6247–6252 (2018)
Liu, H.M., Wang, B.C., Li, D.H., Zeng, X.Y., Tang, X., Gao, Q.S., Cai, J.Y., Cai, H.H.: MoS2 nanosheets with peroxidase mimicking activity as viable dual-mode optical probes for determination and imaging of intracellular hydrogen peroxide. Microchim Acta. 185(6), 287 (2018)
Bao, Y.W., Hua, X.W., Li, Y.H., Jia, H.R., Wu, F.G.: Hyperthermia promoted cytosolic and nuclear delivery of copper/carbon quantum dot-crosslinked nanosheets: multimodal imaging-guided photothermal cancer therapy. ACS Appl. Mater Interfaces. 10(2), 1544–1555 (2018)
Guldi, D.M., Rahman, G.M., Jux, N., Balbinot, D., Hartnagel, U., Tagmatarchis, N., Prato, M.: Functional single-wall carbon nanotube nanohybrids associating SWNTs with water-soluble enzyme model systems. J. Am. Chem. Soc. 127(27), 9830–9838 (2005)
Luque, G.L., Rojas, M.I., Rivas, G.A., Leiva, E.P.M.: The origin of the catalysis of hydrogen peroxide reduction by functionalized graphene surfaces: a density functional theory study. Electrochim. Acta 56(1), 523–530 (2010)
Tang, Y.F., Allen, B.L., Kauffman, D.R., Star, A.: Electrocatalytic activity of nitrogen-doped carbon nanotube cups. J. Am. Chem. Soc. 131(37), 13200–13201 (2009)
Fornera, S., Yazawa, K., Walde, P.: Spectrophotometric quantification of lactose in solution with a peroxidase-based enzymatic cascade reaction system. Anal. Bioanal. Chem. 401, 2307–2310 (2011)
Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., Wang, T., Feng, J., Yang, D., Perrett, S., Yan, X.: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007)
Long, Y.J., Li, Y.F., Liu, Y., Zheng, J.J., Tang, J., Huang, C.Z.: Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem. Commun. 47, 11939–11941 (2011)
Mu, J., Wang, Y., Zhao, M.: Zhang, L Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun 48, 2540–2542 (2012)
Cai, S., Han, Q., Qi, C., Lian, Z., Jia, X., Yang, R., Wang, C.: Pt74Ag26 nanoparticle-decorated ultrathin MoS2 nanosheets as novel peroxidase mimics for highly selective colorimetric detection of H2O2 and glucose. Nanoscale 8, 3685–3693 (2016)
Natalio, F., Andre, R., Hartog, A.F., Stoll, B., Jochum, K.P., Wever, R., Tremel, W.: Vanadium pentoxide nanoparticles mimic vanadium Haloperoxidases and thwart biofilm formation. Nat. Nanotechnol. 7, 530–535 (2012)
Maria-Hormigos, R., Jurado-Sanchez, B., Escarpa, A.: Self-propelled micromotors for naked-eye detection of phenylenediamines isomers. Anal. Chem. 90(16), 9830–9837 (2018)
Sun, H.J., Zhou, Y., Ren, J.S., Qu, X.G.: Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew Chem. Int. Ed. 57(30), 9224–9237 (2018)
Xie, J.X., Zhang, X.D., Wang, H., Zheng, H.Z., Huang, Y.M., Xie, J.X.: Analytical and environmental applications of nanoparticles as enzyme mimetics. TrAC Trend Anal. Chem. 39, 114–129 (2012)
Nasir, M., Nawaz, M.H., Yaqub, M., Haya, A., Rahim, A.: An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta. 184(2), 323–342 (2017)
Liao, H.; Hu, L.Z.; Zhang, Y.Z.; Yu, X.R.; Liu, Y.L.; Li, R. A highly selective colorimetric sulfide assay based on the inhibition of the peroxidase-like activity of copper nanoclusters. Microchim. Acta. 2018, 185–143
Liu, H.M.; Wang, B.C.; Li, D.H.; Zeng, X.Y.; Tang, X.; Gao, Q.S.; Cai, JY, Cai, H.H. MoS2 nanosheets with peroxidase mimicking activity as viable dual-mode optical probes for determination and imaging of intracellular hydrogen peroxide. Microchim Acta 2018, 185(6), 287
Tran, H.V., Nguyen, T.V., Nguyen, N.D., Piro, B., Huynh, C.D.: A nanocomposite prepared from FeOOH and N-doped carbon nanosheets as a peroxidase mimic, and its application to enzymatic sensing of glucose in human urine. Microchim. Acta. 185, 270 (2018)
Tang, S., Wang, M., Li, G., Li, X., Chen, W., Zhang, L.: Ultrasensitive colorimetric determination of silver(I) based on the peroxidase mimicking activity of a hybrid material composed of graphitic carbon nitride and platinum nanoparticles. Microchim. Acta. 185(5), 273 (2018)
Guo, Y., Zhang, L., Zhang, S., Yang, Y., Chen, X., Zhang, M.: Fluorescent carbon nanoparticles for the fluorescent detection of metal ions. Biosens. Bioelectron. 63, 61–71 (2015)
Isnaeni, Herbani, Y.; Suliyanti, M.M. Concentration effect on optical properties of carbon dots at room temperature. J. Lumin 2018, 198:215–219.
Jomar, J.C., Camacho, D.H.: Influence of precursor size in the hydrothermal synthesis of cellulose-based carbon nanodots and its application towards solar cell sensitization. Mater. Chem. Phys. 228, 187–193 (2019)
Xu, X., Ray, R., Gu, Y., Ploehn, H.J., Gearheart, L., Raker, K., Scrivens, W.A.: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126(40), 12736–12743 (2004)
Sun, Y-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, KAS.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang,X.; Wang, H.; Luo,P.G.; Yang, H.; Kose, M.E.; Chen, B.; Veca, L.M.; Xie, S-Y. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128(24): 7756–7757.
Jusuf, B.N., Sambudi, N.S., Isnaeni, I., Samsuri, S.: Microwave-assisted synthesis of carbon dots from eggshell membrane ashes by using sodium hydroxide and their usage for degradation of methylene blue. J. Environ. Chem. Eng. 6(6), 7426–7433 (2018)
Kaur, N., Mehta, A., Mishra, A., Chaudhary, S., Rawat, M., Basu, S.: Amphiphilic carbon dots derived by cationic surfactant for selective and sensitive detection of metal ions. Mater Sci Eng C 95, 72–77 (2019)
Lewa, I.W.L., Sutanto, H., Subagio, A., Marhaendrajaya, I., Sugito, H.: Bright green fluorescence of microwave irradiation-synthesized Cdots as a sensitive probe of iron (III). Materials Research Express 6, 105703 (2019)
Namdari, P., Negahdari, B., Eatemadi, A.: Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother 87(88), 209–222 (2017)
Nguyen, V., Yan, L., Xu, H., Yue, M.: One-step synthesis of multi-emission carbon nanodots for ratiometric temperature sensing. Appl Surf Sci 427, 1118–1123 (2018)
Wang, Y., Chen, D., Zhang, J., Balogun, M.-S., Wang, P., Tong, Y., Huang, Y.: Charge Relays via dual carbon-actions on nanostructured bivo4 for high performance photoelectrochemical water splitting. Adv. Funct. Mater. 32, 2112738 (2022)
Li, K., Lu, X., Zhang, Y., Liu, K., Huang, Y.C., Liu, H.: Bi3TaO7/Ti3C2 heterojunctions for enhanced photocatalytic removal of water-borne contaminants. Environ. Res. 185, 109409 (2020)
Li,G.; Ouyang,T.; Xiong,T.; Jiang,Z.; Adekoya,D.; Wu,Y.; Huang, Balogun,M.S. All-carbon-frameworks enabled thick electrode with exceptional high-areal-capacity for Li-Ion storage,Carbon 2021, 174, 1–9.
Yang,H.; Xiong,T.; ,Zhu,Z.; Xiao,R.; Yao,X.; Huang,Y.; Balogun,M.S.Deciphering the lithium storage chemistry in flexible carbon fiber-based self-supportive electrodes Carbon Energy. 2022,1–13.
Ye, K., Li, Y., Yang, H., Li, M., Huang, Y., Zhang, S., Ji, H.: An ultrathin carbon layer activated CeO2 heterojunction nanorods for photocatalytic degradation of organic pollutants. Appl. Catal. B 259, 118085 (2019)
Garg, B., Bisht, T.: Carbon Nanodots as Peroxidase Nanozymes for Biosensing. Molecules 21(12), 1653 (2016)
Jin, J., Li, L., Zhang, L., Luan, Z., Xin, S., Song, K.: Progress in the Application of Carbon Dots-Based Nanozymes. Front. Chem. 9, 748044 (2021)
Deka, M.J., Chowdhury, D., Nath, B.K.: Recent development of modified fluorescent carbon quantum dots-based fluorescence sensors for food quality assessment. Carbon Lett. 32, 1131–1149 (2022)
Wei, S.C., Lin, Y.W., Chang, H.T.: Carbon dots as artificial peroxidases for analytical applications. J Food Drug Anal. 28(4), 558–574 (2020)
Pang, S., Liu, S.: Dual-emission carbon dots for ratiometric detection of Fe3+ ions and acid phosphatase. Anal Chim Acta 1105, 155–161 (2020)
Praneerad, J., Thongsai, N., Supchocksoonthorn, P., Kladsomboon, S., Paoprasert, P.: Multipurpose sensing applications of biocompatible radish-derived carbon dots as Cu2+ and acetic acid vapor sensors. Spectrochim Acta. A Mol. Biomol. Spectrosc. 211, 59–70 (2019)
Saikia, M., Hower, J.C., Das, T., Dutta, T., Saikia, B.K.: Feasibility study of the preparation of carbon quantum dots from Pennsylvania anthracite and Kentucky bituminous coals. Fuel 243, 433–440 (2019)
Shen, J., Zhu, Y., Yang, X., Li, C.: Graphene quantum dots: emergent nano lights for bioimaging, sensors, catalysis, and photovoltaic devices. Chem. Commun. 48(31), 3686–3699 (2012)
Siddique, A.B.; Pratap, Singh V, Chatterjee S, Kumar Pramanik A, Ray M. Facile synthesis and versatile applications of amorphous carbon dot. Mater Today Proc 2018, 5(3),10077–10083.
Wang, R., Wang, X., Sun, Y.: Sensors and actuators B: chemical one-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH. Sens. Actuat. B Chem. 241, 73–79 (2017)
留言 (0)