CRISPR FISHer enables high-sensitivity imaging of nonrepetitive DNA in living cells through phase separation-mediated signal amplification

Dekker, J. et al. The 4D nucleome project. Nature 549, 219–226 (2017).

CAS  Article  Google Scholar 

Ain, Q., Schmeer, C., Wengerodt, D., Witte, O. W. & Kretz, A. Extrachromosomal circular DNA: Current knowledge and implications for CNS aging and neurodegeneration. Int. J. Mol. Sci. 21, 2477 (2020).

CAS  Article  Google Scholar 

Foxman, E. F. & Iwasaki, A. Genome-virome interactions: Examining the role of common viral infections in complex disease. Nat. Rev. Microbiol. 9, 254–264 (2011).

CAS  Article  Google Scholar 

Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

CAS  Article  Google Scholar 

Roukos, V. et al. Spatial dynamics of chromosome translocations in living cells. Science 341, 660–664 (2013).

CAS  Article  Google Scholar 

Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

CAS  Article  Google Scholar 

Langer-Safer, P. R., Levine, M. & Ward, D. C. Immunological methods for mapping genes on Drosophila polytene chromosomes. Proc. Natl. Acad. Sci. USA 79, 4381–4385 (1982).

CAS  Article  Google Scholar 

Ma, H. et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat. Biotechnol. 34, 528–530 (2016).

CAS  Article  Google Scholar 

Chen, B., Guan, J. & Huang, B. Imaging specific genomic DNA in living cells. Annu. Rev. Biophys. 45, 1–23 (2016).

CAS  Article  Google Scholar 

Ma, H. et al. CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat. Methods 15, 928–931 (2018).

CAS  Article  Google Scholar 

Qin, P. et al. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat. Commun. 8, 14725 (2017).

CAS  Article  Google Scholar 

Wang, H. et al. CRISPR-mediated live imaging of genome editing and transcription. Science 365, 1301–1305 (2019).

CAS  Article  Google Scholar 

Sawada, H. & Saunders, G. F. Transcription of nonrepetitive DNA in human tissues. Cancer Res. 34, 516–520 (1974).

CAS  PubMed  Google Scholar 

Letarov, A. V., Londer, Y. Y., Boudko, S. P. & Mesyanzhinov, V. V. The carboxy-terminal domain initiates trimerization of bacteriophage T4 fibritin. Biochem. 64, 817–823 (1999).

CAS  Google Scholar 

Yang, X. et al. Highly stable trimers formed by human immunodeficiency virus type 1 envelope glycoproteins fused with the trimeric motif of T4 bacteriophage fibritin. J. Virol. 76, 4634–4642 (2002).

CAS  Article  Google Scholar 

Meier, S., Güthe, S., Kiefhaber, T. & Grzesiek, S. Foldon, the natural trimerization domain of T4 fibritin, dissociates into a monomeric A-state form containing a stable β-hairpin: Atomic details of trimer dissociation and local β-hairpin stability from residual dipolar couplings. J. Mol. Biol. 344, 1051–1069 (2004).

CAS  Article  Google Scholar 

Ma, H. et al. CRI SPR-Cas9 nuclear dynamics and target recognition in living cells. J. Cell Biol. 214, 529–537 (2016).

CAS  Article  Google Scholar 

Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015).

CAS  Article  Google Scholar 

Deng, W., Shi, X., Tjian, R., Lionnet, T. & Singer, R. H. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl. Acad. Sci. USA 112, 11870–11875 (2015).

CAS  Article  Google Scholar 

Al-Romaih, K. et al. Chromosomal instability in osteosarcoma and its association with centrosome abnormalities. Cancer Genet. Cytogenet. 144, 91–99 (2003).

CAS  Article  Google Scholar 

Hwang, W. L. Characterization of hepatitis B virus integrant that results in chromosomal rearrangement. DNA Cell Biol. 17, 415–425 (1998).

Article  Google Scholar 

Shamay, M., Agami, R. & Shaul, Y. HBV integrants of hepatocellular carcinoma cell lines contain an active enhancer. Oncogene 20, 6811–6819 (2001).

CAS  Article  Google Scholar 

Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

CAS  Article  Google Scholar 

Yin, H. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34, 328–333 (2016).

CAS  Article  Google Scholar 

Wu, S. S., Li, Q. C., Yin, C. Q., Xue, W. & Song, C. Q. Advances in CRISPR/Cas-based gene therapy in human genetic diseases. Theranostics 10, 4374–4382 (2020).

CAS  Article  Google Scholar 

Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

CAS  Article  Google Scholar 

Yamauchi, M. et al. Regulation of pairing between broken DNA-containing chromatin regions by Ku80, DNA-PKcs, ATM, and 53BP1. Sci. Rep. 7, 41812 (2017).

CAS  Article  Google Scholar 

Ferguson, D. O. & Alt, F. W. DNA double strand break repair and chromosomal translocation: Lessons from animal models. Oncogene 20, 5572–5579 (2001).

CAS  Article  Google Scholar 

Turner, K. M. et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543, 122–125 (2017).

CAS  Article  Google Scholar 

Wang, Y. et al. eccDNAs are apoptotic products with high innate immunostimulatory activity. Nature 599, 308–314 (2021).

CAS  Article  Google Scholar 

Møller, H. D. et al. Circular DNA elements of chromosomal origin are common in healthy human somatic tissue. Nat. Commun. 9, 1069 (2018).

Article  Google Scholar 

Dhungel, B. P., Bailey, C. G. & Rasko, J. E. J. Journey to the center of the cell: tracing the path of AAV transduction. Trends Mol. Med. 27, 172–184 (2021).

CAS  Article  Google Scholar 

Song, C. Q. et al. Genome-wide CRISPR screen identifies regulators of mitogen-activated protein kinase as suppressors of liver tumors in mice. Gastroenterology 152, 1161–1173.e1 (2017).

CAS  Article  Google Scholar 

Xu, H. et al. TriTag: An integrative tool to correlate chromatin dynamics and gene expression in living cells. Nucleic Acids Res. 48, E127–E127 (2020).

CAS  Article  Google Scholar 

Guan, J., Liu, H., Shi, X., Feng, S. & Huang, B. Tracking multiple genomic elements using correlative CRISPR imaging and sequential DNA FISH. Biophys. J. 112, 1077–1084 (2017).

CAS  Article  Google Scholar 

Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

Article  Google Scholar 

Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

Article  Google Scholar 

Prada-Luengo, I., Krogh, A., Maretty, L. & Regenberg, B. Sensitive detection of circular DNAs at single-nucleotide resolution using guided realignment of partially aligned reads. BMC Bioinformatics 20, 663 (2019).

CAS  Article  Google Scholar 

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

CAS  Article  Google Scholar 

Yin, T., Cook, D. & Lawrence, M. ggbio: an R package for extending the grammar of graphics for genomic data. Genome Biol. 13, R77 (2012).

Article  Google Scholar 

留言 (0)

沒有登入
gif