PROTACs: Current Trends in Protein Degradation by Proteolysis-Targeting Chimeras

Cimas FJ, Niza E, Juan A, Noblejas-López MDM, Bravo I, Lara-Sanchez A, et al. Controlled delivery of bet-protacs: In vitro evaluation of MZ1-loaded polymeric antibody conjugated nanoparticles in breast cancer. Pharmaceutics. 2020;12(10):986.

CAS  PubMed Central  Article  Google Scholar 

Coleman N, Rodon J. Taking aim at the undruggable. Am Soc Clin Oncol Educ Book. 2021;41:1–8.

PubMed  Google Scholar 

Zahreddine H, Borden KLB. Mechanisms and insights into drug resistance in cancer. Front Pharmacol. 2013;4:28.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Kastl JM, Davies G, Godsman E, Holdgate GA. Small-molecule degraders beyond PROTACs—challenges and opportunities. SLAS Discov Advanc Sci Drug Discov. 2021;26(4):524.

CAS  Article  Google Scholar 

Zou Y, Ma D, Wang Y. The PROTAC technology in drug development. Cell Biochem Funct. 2019;37(1):21.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Barghout SH. Targeted protein degradation: an emerging therapeutic strategy in cancer. Anti-Cancer Agents Med Chem. 2020;21(2).

Luh LM, Scheib U, Juenemann K, Wortmann L, Brands M, Cromm PM. Prey for the proteasome: targeted protein degradation—a medicinal chemist’s perspective, vol. 59. Angewandte Chemie - International Edition; 2020.

Gao H, Sun X, Rao Y. PROTAC technology: opportunities and challenges, vol. 11. ACS Medicinal Chemistry Letters; 2020.

Ocaña A, Pandiella A. Proteolysis targeting chimeras (PROTACs) in cancer therapy. J Exp Clin Cancer Res. 2020;39(1).

Khan S, He Y, Zhang X, Yuan Y, Pu S, Kong Q, et al. PROteolysis TArgeting Chimeras (PROTACs) as emerging anticancer therapeutics. Oncogene. 2020;39(26).

Sun X, Gao H, Yang Y, He M, Wu Y, Song Y, et al. Protacs: Great opportunities for academia and industry, vol. 4. Signal Transduction and Targeted Therapy; 2019.

Nomura DK, Dey M. Advances and opportunities in targeted protein degradation. Cell Chem Biol. 2021;28(7):887–8.

CAS  PubMed  Article  Google Scholar 

Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA. 2001;98(15).

Ishida T, Ciulli A. E3 ligase ligands for PROTACs: how they were found and how to discover new ones. SLAS Discov Adv Sci Drug Discov. 2021;26(4):484–502.

CAS  Article  Google Scholar 

Schneekloth JS, Fonseca FN, Koldobskiy M, Mandal A, Deshaies R, Sakamoto K, et al. Chemical genetic control of protein levels: selective in vivo targeted degradation. J Am Chem Soc. 2004;126(12).

Schneekloth AR, Pucheault M, Tae HS, Crews CM. Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg Med Chem Lett. 2008;18(22):5904–8.

CAS  PubMed  Article  Google Scholar 

Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20(11):1242–53.

CAS  PubMed  Article  Google Scholar 

Ciechanover A, Schwartz AL. The ubiquitin-proteasome pathway: The complexity and myriad functions of proteins death. Proc Natl Acad Sciences. 1998;95(6).

Abbineni C, Satyam LK, Kuila B, Ettam A, Rawoof KA, MR S, et al. Abstract 1144: Orally bioavailable SMARCA2 degraders with exceptional selectivity and potency. In: Experimental and molecular therapeutics. American Association for Cancer Research; 2021. p. 1144. http://cancerres.aacrjournals.org/lookup/doi/https://doi.org/10.1158/1538-7445.AM2021-1144

An S, Fu L. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018;36:553–62.

PubMed  PubMed Central  Article  Google Scholar 

Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol. 2006;17.

Pei H, Peng Y, Zhao Q, Chen Y. Small molecule PROTACs: an emerging technology for targeted therapy in drug discovery. RSC Adv. 2019;9(30):16967–76. http://xlink.rsc.org/?DOI=C9RA03423D

Qi SM, Dong J, Xu ZY, Cheng XD, Zhang WD, Qin JJ. PROTAC: an effective targeted protein degradation strategy for cancer therapy. Front Pharmacol. 2021;7:12.

Google Scholar 

den Besten W, Lipford JR. Prospecting for molecular glues, vol. 16. Nature Chemical Biology; 2020.

Dong G, Ding Y, He S, Sheng C. Molecular glues for targeted protein degradation: from serendipity to rational discovery. J Med Chem. 2021;64(15).

Ottis P, Toure M, Cromm PM, Ko E, Gustafson JL, Crews CM. Assessing different E3 ligases for small molecule induced protein ubiquitination and degradation. ACS Chem Biol. 2017;12(10).

Girardini M, Maniaci C, Hughes SJ, Testa A, Ciulli A. Cereblon versus VHL: hijacking E3 ligases against each other using PROTACs. Bioorgan Med Chem. 2019;27(12).

Galdeano C, Gadd MS, Soares P, Scaffidi S, van Molle I, Birced I, et al. Structure-guided design and optimization of small molecules targeting the protein–protein interaction between the von Hippel–Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J Med Chem. 2014;57(20).

Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem. 2017;86(1):129–57.

CAS  PubMed  Article  Google Scholar 

Iconomou M, Saunders DN. Systematic approaches to identify E3 ligase substrates. Biochem J. 2016;473.

Canning P, Bullock AN. New strategies to inhibit KEAP1 and the Cul3-based E3 ubiquitin ligases. Biochem Soc Trans. 2014;42(1).

Poongavanam V, Kihlberg J. PROTAC cell permeability and oral bioavailability: a journey into uncharted territory. Future Med Chem. 2022;14(3):123–6.

CAS  PubMed  Article  Google Scholar 

Wei J, Meng F, Park KS, Yim H, Velez J, Kumar P, et al. Harnessing the E3 ligase KEAP1 for targeted protein degradation. J Am Chem Soc. 2021;143(37):15073–83.

CAS  PubMed  Article  Google Scholar 

Li L, Mi D, Pei H, Duan Q, Wang X, Zhou W, et al. In vivo target protein degradation induced by PROTACs based on E3 ligase DCAF15. Signal Transduct Target Ther. 2020;5(1):129.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Canzani D, Rusnac DV, Zheng N, Bush MF. Degronomics: mapping the interacting peptidome of a ubiquitin ligase using an integrative mass spectrometry strategy. Anal Chem. 2019;91(20):12775–83.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Dong C, Zhang H, Li L, Tempel W, Loppnau P, Min J. Molecular basis of GID4-mediated recognition of degrons for the Pro/N-end rule pathway. Nat Chem Biol. 2018;14(5):466–73.

CAS  PubMed  Article  Google Scholar 

Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Targ Ther. 2021;6(1).

Lai AC, Crews CM. Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov. 2017;16(2):101–14.

CAS  PubMed  Article  Google Scholar 

Nalawansha DA, Crews CM. PROTACs: an emerging therapeutic modality in precision medicine. Cell Chem Biol. 2020;27(8).

Kostic M, Jones LH. Critical assessment of targeted protein degradation as a research tool and pharmacological modality. Trends Pharmacol Sci. 2020;40.

Bondeson DP, Smith BE, Burslem GM, Buhimschi AD, Hines J, Jaime-Figueroa S, et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem Biol. 2018;25(1):78-87.e5.

CAS  PubMed  Article  Google Scholar 

Mares A, Miah AH, Smith IED, Rackham M, Thawani AR, Cryan J, et al. Extended pharmacodynamic responses observed upon PROTAC-mediated degradation of RIPK2. Commun Biol. 2020;3(1):140.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Donovan KA, Ferguson FM, Bushman JW, Eleuteri NA, Bhunia D, Ryu SS, et al. Mapping the degradable kinome provides a resource for expedited degrader development. Cell. 2020;183(6).

Paiva SL, Crews CM. Targeted protein degradation: elements of PROTAC design. Curr Opin Chem Biol. 2019;50:111–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

King HM, Rana S, Kubica SP, Mallareddy JR, Kizhake S, Ezell EL, et al. Aminopyrazole based CDK9 PROTAC sensitizes pancreatic cancer cells to venetoclax. Bioorgan Med Chem Lett. 2021;43.

Wang Y, Jiang X, Feng F, Liu W, Sun H. Degradation of proteins by PROTACs and other strategies. Acta Pharm Sin B. 2020;10.

Bondeson DP, Mares A, Smith IED, Ko E, Campos S, Miah AH, et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol. 2015;11(8):611–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Guo WH, Qi X, Yu X, Liu Y, Chung CI, Bai F, et al. Enhancing intracellular accumulation and target engagement of PROTACs with reversible covalent chemistry. Nat Commun. 2020;11(1):4268.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Daniels DL, Riching KM, Urh M. Monitoring and deciphering protein degradation pathways inside cells. Drug Discov Today Technol. 2019;31:61–8.

PubMed  Article  Google Scholar 

Han B. A suite of mathematical solutions to describe ternary complex formation and their application to targeted protein degradation by heterobifunctional ligands. J Biol Chem. 2020;295(45).

Huang X, Dixit VM. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 2016;26(4).

Burslem GM, Crews CM. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell. 2020;181(1):102–14.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Smalley JP, Baker IM, Pytel WA, Lin LY, Bowman KJ, Schwabe JWR, et al. Optimization of class I HISTONE deacetylase PROTACs reveals that HDAC1/2 degradation is critical to induce apoptosis and cell arrest in cancer cells. J Med Chem. 2022;65(7):5642–59.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gadd MS, Testa A, Lucas X, Chan KH, Chen W, Lamont DJ, et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol. 2017;13(5):514–21.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Troup RI, Fallan C, Baud MGJ. Current strategies for the design of PROTAC linkers: a critical review. Explor Targ Anti-tumor Ther. 2020;1(5).

Pillow TH, Adhikari P, Blake RA, Chen J, del Rosario G, Deshmukh G, et al. Antibody conjugation of a chimeric BET degrader enables in vivo activity. ChemMedChem. 2020;15(1).

Konstantinidou M, Li J, Zhang B, Wang Z, Shaabani S, ter Brake F, et al. PROTACs—a game-changing technology. Expert Opin Drug Discov. 2019;14(12).

Pike A, Williamson B, Harlfinger S, Martin S, McGinnity DF. Optimising proteolysis-targeting chimeras (PROTACs) for oral drug delivery: a drug metabolism and pharmacokinetics perspective. Drug Discov Today. 2020;25(10):1793–800.

CAS  PubMed  Article  Google Scholar 

Fandozzi C, Evans C, Wilson A, Su D, Anderson M, Clausen V, et al. 2019 White paper on recent issues in bioanalysis: chromatographic assays (Part 1—Innovation in small molecules and oligonucleotides & mass spectrometric method development strategies for large molecule bioanalysis). Bioanalysis. 2019;11(22):2029–48.

PubMed  Article  Google Scholar 

Hann MM. Molecular obesity, potency and other addictions in drug discovery. Medchemcomm. 2011;2(5).

Scott DE, Rooney TPC, Bayle ED, Mirza T, Willems HMG, Clarke JH, et al. Systematic investigation of the permeability of androgen receptor PROTACs. ACS Med Chem Lett. 2020;11(8):1539–47.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cecchini C, Pannilunghi S, Tardy S, Scapozza L. From conception to development: investigating PROTACs features for improved cell permeability and successful protein degradation. Front Chem. 2021;9.

Atilaw Y, Poongavanam V, Svensson Nilsson C, Nguyen D, Giese A, Meibom D, et al. Solution conformations shed light on PROTAC cell permeability. ACS Med Chem Lett. 2021;12(1):107–14.

CAS  PubMed  Article  Google Scholar 

Klein VG, Townsend CE, Testa A, Zengerle M, Maniaci C, Hughes SJ, et al. Understanding and improving the membrane permeability of VH032-based PROTACs. ACS Med Chem Lett. 2020;11(9):1732–8.

留言 (0)

沒有登入
gif