Heat-shock chaperone HSPB1 regulates cytoplasmic TDP-43 phase separation and liquid-to-gel transition

Ling, S.-C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

CAS  PubMed  Google Scholar 

Neumann, M. et al. Absence of heterogeneous nuclear ribonucleoproteins and survival motor neuron protein in TDP-43 positive inclusions in frontotemporal lobar degeneration. Acta Neuropathol. 113, 543–548 (2007).

CAS  PubMed  Google Scholar 

Josephs, K. A. et al. TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathol. 127, 811–824 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Nelson, P. T. et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142, 1503–1527 (2019).

PubMed  PubMed Central  Google Scholar 

Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

CAS  PubMed  Google Scholar 

Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Gasset-Rosa, F. et al. Cytoplasmic TDP-43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron 102, 339–357 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Wang, A. et al. A single N‐terminal phosphomimic disrupts TDP‐43 polymerization, phase separation, and RNA splicing. EMBO J. 37, e97452 (2018).

PubMed  PubMed Central  Google Scholar 

Mann, J. R. et al. RNA binding antagonizes neurotoxic phase transitions of TDP-43. Neuron 102, 321–338. e328 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

McGurk, L. et al. Poly(ADP-ribose) prevents pathological phase separation of TDP-43 by promoting liquid demixing and stress granule localization. Mol. Cell 71, 703–717 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Conicella, A. E. et al. TDP-43 α-helical structure tunes liquid–liquid phase separation and function. Proc. Natl Acad. Sci. USA 117, 5883–5894 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Wang, C. et al. Stress induces dynamic, cytotoxicity-antagonizing TDP-43 nuclear bodies via paraspeckle lncRNA NEAT1-mediated liquid-liquid phase separation. Mol. Cell 79, 443–458 (2020).

CAS  PubMed  Google Scholar 

Yu, H. et al. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science 371, eabb4309 (2021).

Ganassi, M. et al. A surveillance function of the HSPB8–BAG3–HSP70 chaperone complex ensures stress granule integrity and dynamism. Mol. Cell 63, 796–810 (2016).

CAS  PubMed  Google Scholar 

Kedersha, N. & Anderson, P. Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem. Soc. Trans. 30, 963–969 (2002).

CAS  PubMed  Google Scholar 

Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

CAS  PubMed  Google Scholar 

Tyedmers, J., Mogk, A. & Bukau, B. Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell Biol. 11, 777–788 (2010).

CAS  PubMed  Google Scholar 

Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

CAS  PubMed  Google Scholar 

Macario, A. J., Grippo, T. M. & de Macario, E. C. Genetic disorders involving molecular-chaperone genes: a perspective. Genet. Med. 7, 3–12 (2005).

CAS  PubMed  Google Scholar 

Sarparanta, J., Jonson, P. H., Kawan, S. & Udd, B. J. Neuromuscular diseases due to chaperone mutations: a review and some new results. Int. J. Mol. Sci. 21, 1409 (2020).

CAS  PubMed Central  Google Scholar 

Brehme, M. et al. A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep. 9, 1135–1150 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Voisine, C., Pedersen, J. S. & Morimoto, R. I. Chaperone networks: tipping the balance in protein folding diseases. Neurobiol. Dis. 40, 12–20 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Haslbeck, M., Franzmann, T., Weinfurtner, D. & Buchner, J. Some like it hot: the structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol. 12, 842–846 (2005).

CAS  PubMed  Google Scholar 

Shashidharamurthy, R., Koteiche, H. A., Dong, J. & McHaourab, H. S. Mechanism of chaperone function in small heat shock proteins: dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme. J. Biol. Chem. 280, 5281–5289 (2005).

CAS  PubMed  Google Scholar 

D’Angelo, M. A., Raices, M., Panowski, S. H. & Hetzer, M. W. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136, 284–295 (2009).

PubMed  PubMed Central  Google Scholar 

Mertens, J. et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17, 705–718 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Cohen, T. J. et al. An acetylation switch controls TDP-43 function and aggregation propensity. Nat. Commun. 6, 1–13 (2015).

Google Scholar 

Wang, P., Wander, C. M., Yuan, C.-X., Bereman, M. S. & Cohen, T. J. Acetylation-induced TDP-43 pathology is suppressed by an HSF1-dependent chaperone program. Nat. Commun. 8, 82 (2017).

PubMed  PubMed Central  Google Scholar 

Keller, J. N., Hanni, K. B. & Markesbery, W. R. Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mechanisms Ageing Dev. 113, 61–70 (2000).

CAS  Google Scholar 

Keller, J. N., Huang, F. F. A. & Markesbery, W. R. Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience 98, 149–156 (2000).

CAS  PubMed  Google Scholar 

Buratti, E. & Baralle, F. E. Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem. 276, 36337–36343 (2001).

CAS  PubMed  Google Scholar 

Elden, A. C. et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069–1075 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Harmon, T.S., Holehouse, A.S., Rosen, M.K. & Pappu, R.V. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6, e30294 (2017).

Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

CAS  PubMed  Google Scholar 

Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14, 459–468 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Ayala, Y. M. et al. TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J. 30, 277–288 (2011).

CAS  PubMed  Google Scholar 

Schmidt, H. B. & Rohatgi, R. In vivo formation of vacuolated multi-phase compartments lacking membranes. Cell Rep. 16, 1228–1236 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Rhee, H.-W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Lam, S. S. et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 12, 51–54 (2015).

CAS  PubMed  Google Scholar 

Lobingier, B. T. et al. An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169, 350–360 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Paek, J. et al. Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling. Cell 169, 338–349 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Johnson, B. S. et al. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J. Biol. Chem. 284, 20329–20339 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Babinchak, W. M. et al. The role of liquid–liquid phase separation in aggregation of the TDP-43 low-complexity domain. J. Biol. Chem. 294, 6306–6317 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Shenoy, J. et al. Structural dissection of amyloid aggregates of TDP‐43 and its C‐terminal fragments TDP‐35 and TDP‐16. FEBS J. 287, 2449–2467 (2020).

留言 (0)

沒有登入
gif