Considerations in the Immunogenicity Assessment Strategy for Oligonucleotide Therapeutics (ONTs)

Lundin KE, Gissberg O, CIE S. Oligonucleotide therapies: the past and the present. Hum Gene Ther. 2015;26:475–85.

Bennett CF, Baker BF, Pham N, Swayze E, Geary RS. Pharmacology of antisense drugs [Internet]. Vol. 57, Annual Review of Pharmacology and Toxicology. Annual Reviews; 2017 [cited 2021 Nov 1]. p. 81–105. Available from: https://www.annualreviews.org/doi/abs/10.1146/annurev-pharmtox-010716-104846

Stein CA, Castanotto D. FDA-approved oligonucleotide therapies in 2017. Mol Ther. 2017;25:1069–75.

Bennett CF. Therapeutic antisense oligonucleotides are coming of age [Internet]. Vol. 70, Annual Review of Medicine. Annual Reviews; 2019 [cited 2021 Nov 1]. p. 307–21. Available from: https://www.annualreviews.org/doi/abs/10.1146/annurev-med-041217-010829

Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov. 2010;9:537–50.

Khati M. The future of aptamers in medicine. J Clin Pathol. 2010;63:480–7.

Crooke ST, Witztum JL, Bennett CF, Baker BF. RNA-targeted therapeutics. Cell Metab. 2018;27:714–39.

Hu B, Weng Y, Xia XH, Jie LX, Huang Y. Clinical advances of siRNA therapeutics. J Gene Med. 2019;21.

Bajan S, Hutvagner G. RNA-based therapeutics: from antisense oligonucleotides to miRNAs [Internet]. Vol. 9, Cells. Multidisciplinary Digital Publishing Institute; 2020 [cited 2021 Nov 1]. p. 137. Available from: https://www.mdpi.com/2073-4409/9/1/137/htm

Yamakawa K, Nakano-Narusawa Y, Hashimoto N, Yokohira M, Matsuda Y. Development and clinical trials of nucleic acid medicines for pancreatic cancer treatment. Int J Mol Sci. 2019;20.

Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform [Internet]. Vol. 50, Annual Review of Pharmacology and Toxicology. Annu Rev Pharmacol Toxicol; 2010 [cited 2021 Nov 1]. p. 259–93. Available from: https://pubmed.ncbi.nlm.nih.gov/20055705/

Yin W, Rogge M. Targeting RNA: a transformative therapeutic strategy. Clin Transl Sci. 2019;12:98–112.

Bramsen JB, Kjems J. Development of therapeutic-grade small interfering RNAs by chemical engineering. Front Genet. 2012;3.

Chernikov IV, Vlassov VV, Chernolovskaya EL. Current development of siRNA bioconjugates: from research to the clinic. Front Pharmacol. 2019;10.

Wittrup A, Lieberman J. Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet. 2015;16:543–52.

Weng Y, Xiao H, Zhang J, Liang XJ, Huang Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv. 2019;37:801–25.

Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res [Internet]. 2016 Aug 19 [cited 2021 Nov 2];44(14):6518–48. Available from: https://academic.oup.com/nar/article/44/14/6518/2468139

Dahlman JE, Kauffman KJ, Langer R, Anderson DG. Nanotechnology for in vivo targeted siRNA delivery. Adv Genet. 2014;88:37–69.

CAS  Article  Google Scholar 

Leung AKK, Tam YYC, Cullis PR. Lipid nanoparticles for short interfering RNA delivery. In: Advances in Genetics; 2014. p. 71–110.

Google Scholar 

Perry CM, Balfour JAB. Fomivirsen. Drugs. 1999;57(3):375–80.

CAS  Article  Google Scholar 

Scott LJ. Givosiran: first approval. Drugs. 2020;80:335–9.

Corey DR, Damha MJ, Manoharan M. Challenges and opportunities for nucleic acid therapeutics. Nucleic Acid Ther [Internet]. 2022 Feb 1 [cited 2022 Jul 22];32(1):8–13. Available from: https://pubmed.ncbi.nlm.nih.gov/34931905/

Lange MJ, Burke DH, Chaput JC. Activation of innate immune responses by a CpG oligonucleotide sequence composed entirely of threose nucleic acid. Nucleic Acid Ther. 2019;29(1).

Stebbins CC, Petrillo M, Stevenson LF. Immunogenicity for antisense oligonucleotides: a risk-based assessment. Bioanalysis. 2019;11:1913–6.

Koren E, Smith HW, Shores E, Shankar G, Finco-Kent D, Rup B, et al. Recommendations on risk-based strategies for detection and characterization of antibodies against biotechnology products. J Immunol Methods. 2008;333:1–9.

Shankar G, Devanarayan V, Amaravadi L, Barrett YC, Bowsher R, Finco-Kent D, et al. Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products. J Pharm Biomed Anal. 2008;48:1267–81.

Lorenz C, Gesell T, Zimmermann B, Schoeberl U, Bilusic I, Rajkowitsch L, et al. Genomic SELEX for Hfq-binding RNAs identifies genomic aptamers predominantly in antisense transcripts. Nucleic Acids Res. 2010;38(11):3794–808.

CAS  Article  Google Scholar 

Gupta S, Richards S, Amaravadi L, Piccoli S, Desilva B, Pillutla R, et al. 2017 White paper on recent issues in bioanalysis: A global perspective on immunogenicity guidelines & biomarker assay performance (part 3-LBA: immunogenicity, biomarkers and PK assays). In: Bioanalysis; 2017.

Google Scholar 

Gupta S, Devanarayan V, Finco D, Gunn GR, Kirshner S, Richards S, et al. Recommendations for the validation of cell-based assays used for the detection of neutralizing antibody immune responses elicited against biological therapeutics. J Pharm Biomed Anal. 2011;55:878–88.

Gorovits B, Wakshull E, Pillutla R, Xu Y, Manning MS, Goyal J. Recommendations for the characterization of immunogenicity response to multiple domain biotherapeutics. J Immunol Methods. 2014;408:1–12.

Kurki P. Compatibility of immunogenicity guidance by the EMA and the US FDA. Bioanalysis. 2019;11:1619–29.

Patton A, Mullenix MC, Swanson SJ, Koren E. An acid dissociation bridging ELISA for detection of antibodies directed against therapeutic proteins in the presence of antigen. J Immunol Methods. 2005;304(1–2):189–95.

CAS  Article  Google Scholar 

Wadhwa M, Knezevic I, Kang HN, Thorpe R. Immunogenicity assessment of biotherapeutic products: an overview of assays and their utility. Biologicals. 2015;43:298–306.

Pineda C, Castañeda Hernández G, Jacobs IA, Alvarez DF, Carini C. Assessing the immunogenicity of biopharmaceuticals. BioDrugs. 2016;30:195–206.

Wang J, Lon HK, Lee SL, Burckart GJ, Pisetsky DS. Oligonucleotide-based drug development: considerations for clinical pharmacology and immunogenicity. Ther Innov Regul Sci. 2015;49:861–8.

Clinical pharmacology considerations for the development of oligonucleotide therapeutics (draft guidance) [Internet]. 2022 [cited 2022 Jul 22]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-pharmacology-considerations-development-oligonucleotide-therapeutics

FDA. Immunogenicity testing of therapeutic protein products — developing and validating assays for anti-drug antibody detection [Internet]. 2019. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210922Orig1s000OtherR.pdf

EMA. Guideline on immunogenicity assessment of therapeutic proteins [Internet]. 2017. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-immunogenicity-assessment-therapeutic-proteins-revision-1_en.pdf

Hershfield MS, Ganson NJ, Kelly SJ, Scarlett EL, Jaggers DA, Sundy JS. Induced and pre-existing anti-polyethylene glycol antibody in a trial of every 3-week dosing of pegloticase for refractory gout, including in organ transplant recipients. Arthritis Res Ther. 2014;16(2).

Welink J, Xu Y, Yang E, Wilson A, Henderson N, Luo L, et al. 2018 White paper on recent issues in bioanalysis: “A global bioanalytical community perspective on last decade of incurred samples reanalysis (ISR)” (part 1-small molecule regulated bioanalysis, small molecule biomarkers, peptides & oligonucleotide bioanalysis). Bioanalysis. 2018;10(22):1781–801.

Article  Google Scholar 

Nieri P, Donadio D, Rossi S, Adinolfi B, Podesta A. Antibodies for therapeutic uses and the evolution of biotechniques. Curr Med Chem. 2009;16(6):753–79.

CAS  Article  Google Scholar 

Shankar G, Arkin S, Cocea L, Devanarayan V, Kirshner S, Kromminga A, et al. Assessment and reporting of the clinical immunogenicity of therapeutic proteins and peptides - harmonized terminology and tactical recommendations. AAPS J. 2014;16:658–73.

Myler H, Gorovits B, Phillips K, Devanarayan V, Clements-Egan A, Gunn GR, et al. Report on the AAPS Immunogenicity Guidance Forum. AAPS J. 2019;21(4).

Van Meer PJK, Kooijman M, Brinks V, Gispen-De Wied CC, Silva-Lima B, Moors EHM, et al. Immunogenicity of mAbs in non-human primates during nonclinical safety assessment. MAbs [Internet]. 2013 Sep [cited 2022 Jul 22];5(5):810–6. Available from: https://pubmed.ncbi.nlm.nih.gov/23924803/

Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment [Internet]. Vol. 6, Am J Transl Res. 2014. Available from: www.ajtr.org

Peebles RS, Liu MC, Adkinson NF, Lichtenstein LM, Hamilton RG. Ragweed-specific antibodies in bronchoalveolar lavage fluids and serum before and after segmental lung challenge: IgE and IgA associated with eosinophil degranulation. J Allergy Clin Immunol. 1998;101(2 I):265–73.

Stokes Peebles R, Liu MC, Lichtenstein LM, Hamilton RG. IgA, IgG and IgM quantification in bronchoalveolar lavage fluids from allergic rhinitics, allergic asthmatics, and normal subjects by monoclonal antibody-based immunoenzymetric assays. J Immunol Methods. 1995;179(1):77–86.

Article  Google Scholar 

Stokes Peebles R, Hamilton RG, Lichtenstein LM, Schlosberg M, Liu MC, Proud D, et al. Antigen-specific IgE and IgA antibodies in bronchoalveolar lavage fluid are associated with stronger antigen-induced late phase reactions. Clin Exp Allergy. 2001;31(2):239–48.

Article  Google Scholar 

Clements-Egan A, Gorovits B, Myler H. The increasing influx of biotherapeutics opens the door to designing new bioanalytical and validation strategies. AAPS Newsmagazine [Internet]. 2019; Available from: https://www.aapsnewsmagazine.org/aapsnewsmagazine/articles/2019/sep19/cover-story-sep19

Wang X, Xia Y. Anti-double stranded DNA antibodies: origin, pathogenicity, and targeted therapies. Front Immunol. 2019;10(JULY).

Yu RZ, Wang Y, Norris DA, Kim TW, Narayanan P, Geary RS, et al. Immunogenicity assessment of inotersen, a 2-O-(2-methoxyethyl) antisense oligonucleotide in animals and humans: effect on pharmacokinetics, pharmacodynamics, and safety. Nucleic Acid Ther. 2020;30(5).

FDA Submission. Onpattro (patisiran) [Internet]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210922Orig1s000OtherR.pdf

Zhang X, Goel V, Attarwala H, Sweetser MT, Clausen VA, Robbie GJ. Patisiran pharmacokinetics, pharmacodynamics, and exposure-response analyses in the phase 3 APOLLO trial in patients with hereditary transthyretin-mediated (hATTR) amyloidosis. J Clin Pharmacol. 2020;60(1):37–49.

CAS  Article  Google Scholar 

Balwani M, Sardh E, Ventura P, Peiró PA, Rees DC, Stölzel U, et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N Engl J Med [Internet]. 2020 Jun 10 [cited 2021 Nov 1];382(24):2289–301. Available from: https://www.nejm.org/doi/10.1056/NEJMoa1913147

Agarwal S, Simon AR, Goel V, Habtemariam BA, Clausen VA, Kim JB, et al. Pharmacokinetics and pharmacodynamics of the small interfering ribonucleic acid, givosiran, in patients with acute hepatic porphyria. Clin Pharmacol Ther [Internet]. 2020 Jul 1 [cited 2021 Nov 1];108(1):63–72. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/cpt.1802

SPINRAZA (nusinersen) [Internet]. FDA submission. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/209531Orig1s000OtherR.pdf

Pisetsky DS. Anti-DNA antibodies - quintessential biomarkers of SLE. Nat Rev Rheumatol. 2016;12:102–10.

Lou H, Wojciak-Stothard B, Ruseva MM, Cook HT, Kelleher P, Pickering MC, et al. Autoantibody-dependent amplification of inflammation in SLE. Cell Death Dis. 2020;11(9).

留言 (0)

沒有登入
gif