Tear proteomics analysis of patient suffered from delayed mustard gas keratopathy

Borak J, Sidell FR. Agents of chemical warfare: sulfur mustard. Ann Emerg Med. 1992;21(3):303–8.

CAS  PubMed  Article  Google Scholar 

Ghabili K, Agutter PS, Ghanei M, Ansarin K, Panahi Y, Shoja MM. Sulfur mustard toxicity: history, chemistry, pharmacokinetics, and pharmacodynamics. Crit Rev Toxicol. 2011;41(5):384–403.

CAS  PubMed  Article  Google Scholar 

Panahi Y, Abdolghaffari AH, Sahebkar A. A review on symptoms, treatments protocols, and proteomic profile in sulfur mustard-exposed victims. J Cell Biochem. 2018;119(1):197–206.

CAS  PubMed  Article  Google Scholar 

Balali-Mood M, Hefazi M. Comparison of early and late toxic effects of sulfur mustard in Iranian veterans. Basic Clin Pharmacol Toxicol. 2006;99(4):273–82.

CAS  PubMed  Article  Google Scholar 

Kehe K, Szinicz L. Medical aspects of Sulphur mustard poisoning. Toxicology. 2005;214(3):198–209.

CAS  PubMed  Article  Google Scholar 

Hur G-H, Kim Y-B, Choi D-S, Kim J-H, Shin S. Apoptosis as a mechanism of 2-chloroethylethyl sulfide-induced cytotoxicity. Chem Biol Interact. 1998;110(1–2):57–70.

CAS  PubMed  Article  Google Scholar 

Panahi Y, Naderi M, Zare MA, Poursaleh Z. Ocular effects of sulfur mustard. Iranian J Ophthalmol. 2013;25(2):90.

Google Scholar 

Panahi Y, Rajaee SM, Sahebkar A. Ocular effects of sulfur mustard and therapeutic approaches. J Cell Biochem. 2017;118(11):3549–60.

CAS  PubMed  Article  Google Scholar 

Javadi M-A, Yazdani S, Sajjadi H, Jadidi K, Karimian F, Einollahi B, et al. Chronic and delayed-onset mustard gas keratitis: report of 48 patients and review of literature. Ophthalmology. 2005;112(4):617–25.

PubMed  Article  Google Scholar 

Baradaran-Rafii A, Eslani M, Tseng SC. Sulfur mustard-induced ocular surface disorders. Ocul Surf. 2011;9(3):163–78.

PubMed  Article  Google Scholar 

Balali-Mood M, Hefazi M, Mahmoudi M, Jalali E, Attaran D, Maleki M, et al. Long-term complications of Sulphur mustard poisoning in severely intoxicated Iranian veterans. Fundam Clin Pharmacol. 2005;19(6):713–21.

CAS  PubMed  Article  Google Scholar 

Babin MC, Ricketts KM, Gazaway MY, Lee RB, Sweeney RE, Brozetti JJ. A combination drug treatment against ocular sulfur mustard injury. J Toxicol. 2005;23(1):65–75.

Google Scholar 

Jadidi K, Panahi Y, Ebrahimi A, Mafi M, Nejat F, Sahebkar A. Topical cyclosporine a for treatment of dry eye due to chronic mustard gas injury. J Ophthalmic Vis Res. 2014;9(4):417.

PubMed  PubMed Central  Article  Google Scholar 

Shadforth IP, Dunkley TP, Lilley KS, Bessant C. I-tracker: for quantitative proteomics using iTRAQ™. BMC Genomics. 2005;6(1):145.

PubMed  PubMed Central  Article  Google Scholar 

Moulder R, Bhosale SD, Goodlett DR, Lahesmaa R. Analysis of the plasma proteome using iTRAQ and TMT-based isobaric labeling. Mass Spectrom Rev. 2018;37(5):583–606.

CAS  PubMed  Article  Google Scholar 

Aghamollaei H, Parvin S, Shahriary A. Review of proteomics approach to eye diseases affecting the anterior segment. J Proteome. 2020;225:103881.

CAS  Article  Google Scholar 

Schulze U, Sel S, Paulsen F. Trefoil factor family peptide 3 at the ocular surface. A promising therapeutic candidate for patients with dry eye syndrome? Research Projects in Dry Eye Syndrome. 45: Karger Publishers; 2010. p. 1–11.

Google Scholar 

Steven P, Schäfer G, Nölle B, Hinz M, Hoffmann W, Paulsen F. Distribution of TFF peptides in corneal disease and pterygium. Peptides. 2004;25(5):819–25.

CAS  PubMed  Article  Google Scholar 

Paulsen FP, Woon C-W, Varoga D, Jansen A, Garreis F, Jäger K, et al. Intestinal trefoil factor/TFF3 promotes re-epithelialization of corneal wounds. J Biol Chem. 2008;283(19):13418–27.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Paulsen FP, Berry MS. Mucins and TFF peptides of the tear film and lacrimal apparatus. Prog Histochem Cytochem. 2006;41(1):1–53.

CAS  PubMed  Article  Google Scholar 

Schulze U, Hampel U, Sel S, Contreras-Ruiz L, Schicht M, Dieckow J, et al. Trefoil factor family peptide 3 (TFF3) is upregulated under experimental conditions similar to dry eye disease and supports corneal wound healing effects in vitro. Invest Ophthalmol Vis Sci. 2014;55(5):3037–42.

CAS  PubMed  Article  Google Scholar 

Stephens DN, McNamara NA. Altered mucin and glycoprotein expression in dry eye disease. Optom Vis Sci. 2015;92(9):931–8.

PubMed  Article  Google Scholar 

Chairatana P, Nolan EM. Defensins, lectins, mucins, and secretory immunoglobulin a: microbe-binding biomolecules that contribute to mucosal immunity in the human gut. Crit Rev Biochem Mol Biol. 2017;52(1):45–56.

CAS  PubMed  Article  Google Scholar 

Kuo M-T, Fang P-C, Chao T-L, Chen A, Lai Y-H, Huang Y-T, et al. Tear proteomics approach to monitoring Sjögren syndrome or dry eye disease. Int J Mol Sci. 2019;20(8):1932.

CAS  PubMed Central  Article  Google Scholar 

Zhou L, Beuerman RW, Chan CM, Zhao SZ, Li XR, Yang H, et al. Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics. J Proteome Res. 2009;8(11):4889–905.

CAS  PubMed  Article  Google Scholar 

Srinivasan S, Thangavelu M, Zhang L, Green KB, Nichols KK. iTRAQ quantitative proteomics in the analysis of tears in dry eye patients. Invest Ophthalmol Vis Sci. 2012;53(8):5052–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nichols JJ, Green-Church KB. Mass spectrometry-based proteomic analyses in contact lens-related dry eye. Cornea. 2009;28(10):1109–17.

PubMed  Article  Google Scholar 

Soria J, Acera A, Merayo-LLoves J, Durán JA, González N, Rodriguez S, et al. Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep. 2017;7(1):1–15.

CAS  Article  Google Scholar 

Priyadarsini S, Hjortdal J, Sarker-Nag A, Sejersen H, Asara JM, Karamichos D. Gross cystic disease fluid protein-15/prolactin-inducible protein as a biomarker for keratoconus disease. PLoS One. 2014;9(11):e113310.

PubMed  PubMed Central  Article  Google Scholar 

Sharif R, Bak-Nielsen S, Hjortdal J, Karamichos D. Pathogenesis of Keratoconus: the intriguing therapeutic potential of prolactin-inducible protein. Prog Retin Eye Res. 2018;67:150–67.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Umadat V, Ihedioha O, Shiu R, Uzonna J, Myal Y. The prolactin-inducible-protein (PIP): a regulatory molecule in adaptive and innate immunity. Open J Immunol. 2013;13:2013.

Google Scholar 

Chng C-L, Seah LL, Yang M, Shen SY, Koh SK, Gao Y, et al. Tear proteins calcium binding protein A4 (S100A4) and prolactin induced protein (PIP) are potential biomarkers for thyroid eye disease. Sci Rep. 2018;8(1):1–10.

CAS  Article  Google Scholar 

Ananthi S, Chitra T, Bini R, Prajna NV, Lalitha P, Dharmalingam K. Comparative analysis of the tear protein profile in mycotic keratitis patients. Mol Vis. 2008;14:500.

CAS  PubMed  PubMed Central  Google Scholar 

Pieragostino D, Agnifili L, Fasanella V, D'Aguanno S, Mastropasqua R, Di Ilio C, et al. Shotgun proteomics reveals specific modulated protein patterns in tears of patients with primary open angle glaucoma naive to therapy. Mol BioSyst. 2013;9(6):1108–16.

CAS  PubMed  Article  Google Scholar 

Sohn J-H, Kaplan HJ, Suk H-J, Bora PS, Bora NS. Chronic low level complement activation within the eye is controlled by intraocular complement regulatory proteins. Invest Ophthalmol Vis Sci. 2000;41(11):3492–502.

CAS  PubMed  Google Scholar 

Niederkorn JY. The induction of anterior chamber-associated immune deviation. Immune Response and the Eye. 92: Karger Publishers; 2007. p. 27–35.

Google Scholar 

Mondino BJ, Chou HJ, Sumner HL. Generation of complement membrane attack complex in normal human corneas. Invest Ophthalmol Vis Sci. 1996;37(8):1576–81.

CAS  PubMed  Google Scholar 

Bora NS, Gobleman CL, Atkinson JP, Pepose JS, Kaplan HJ. Differential expression of the complement regulatory proteins in the human eye. Invest Ophthalmol Vis Sci. 1993;34(13):3579–84.

CAS  PubMed  Google Scholar 

Tang A, Marquart ME, Fratkin JD, McCormick CC, Caballero AR, Gatlin HP, et al. Properties of PASP: a Pseudomonas protease capable of mediating corneal erosions. Invest Ophthalmol Vis Sci. 2009;50(8):3794–801.

PubMed  Article  Google Scholar 

Cocuzzi E, Guidubaldi J, Bardenstein DS, Chen R, Jacobs MR, Medof ME. Release of complement regulatory proteins from ocular surface cells in infections. Curr Eye Res. 2000;21(5):856–66.

CAS  PubMed  Article  Google Scholar 

留言 (0)

沒有登入
gif