Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management

Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–26.

CAS  PubMed  Article  Google Scholar 

Phan TG, Croucher PI. The dormant cancer cell life cycle. Nat Rev Cancer. 2020;20:398–411.

CAS  PubMed  Article  Google Scholar 

Hanker AB, Sudhan DR, Arteaga CL. Overcoming endocrine resistance in breast cancer. Cancer Cell. 2020;37:496–513.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.

CAS  PubMed  Article  Google Scholar 

Marine J-C, Dawson S-J, Dawson MA. Non-genetic mechanisms of therapeutic resistance in cancer. Nat Rev Cancer. 2020;20:743–56.

CAS  PubMed  Article  Google Scholar 

Braun TP, Eide CA, Druker BJ. Response and resistance to BCR-ABL1-targeted therapies. Cancer Cell. 2020;37:530–42.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jiang J, Zhang L, Chen H, Lei Y, Zhang T, Wang Y, Jin P, Lan J, Zhou L, Huang Z, et al. Regorafenib induces lethal autophagy arrest by stabilizing PSAT1 in glioblastoma. Autophagy. 2020;16:106–22.

CAS  PubMed  Article  Google Scholar 

Zhang Z, Qin S, Chen Y, Zhou L, Yang M, Tang Y, Zuo J, Zhang J, Mizokami A, Nice EC, Chen HN, Huang C, Wei X. Inhibition of NPC1L1 disrupts adaptive responses of drug-tolerant persister cells to chemotherapy. EMBO Mol Med. 2022;14(2):e14903.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resistance Updates. 2011;14:191–201.

CAS  PubMed  Article  Google Scholar 

Boulos JC, Yousof Idres MR, Efferth T. Investigation of cancer drug resistance mechanisms by phosphoproteomics. Pharmacol Res. 2020;160:105091.

CAS  PubMed  Article  Google Scholar 

Li B, Jiang J, Assaraf YG, Xiao H, Chen Z-S, Huang C. Surmounting cancer drug resistance: new insights from the perspective of N-methyladenosine RNA modification. Drug Resistance updates. 2020;53:100720.

PubMed  Article  Google Scholar 

Jin P, Jiang J, Xie N, Zhou L, Huang Z, Zhang L, Qin S, Fu S, Peng L, Gao W, et al. MCT1 relieves osimertinib-induced CRC suppression by promoting autophagy through the LKB1/AMPK signaling. Cell Death Dis. 2019;10:615.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Gong K, Guo G, Gerber DE, Gao B, Peyton M, Huang C, Minna JD, Hatanpaa KJ, Kernstine K, Cai L, et al. TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer. J Clin Investig. 2018;128:2500–18.

PubMed  PubMed Central  Article  Google Scholar 

Eritja N, Chen B-J, Rodríguez-Barrueco R, Santacana M, Gatius S, Vidal A, Martí MD, Ponce J, Bergadà L, Yeramian A, et al. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer. Autophagy. 2017;13:608–24.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ghosh JC, Siegelin MD, Vaira V, Faversani A, Tavecchio M, Chae YC, Lisanti S, Rampini P, Giroda M, Caino MC, et al. Adaptive mitochondrial reprogramming and resistance to PI3K therapy. J Natl Cancer Inst. 2015;107.

Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5:8.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Payandeh Z, Pirpour Tazehkand A, Barati G, Pouremamali F, Kahroba H, Baradaran B, Samadi N. Role of Nrf2 and mitochondria in cancer stem cells; in carcinogenesis, tumor progression, and chemoresistance. Biochimie. 2020;179:32–45.

CAS  PubMed  Article  Google Scholar 

Qin S, Li B, Ming H, Nice EC, Zou B, Huang C. Harnessing redox signaling to overcome therapeutic-resistant cancer dormancy. Biochimica et Biophysica Acta (BBA) - Rev Cancer. 2022;1877(4):188749.

Li B, Huang Y, Ming H, Nice EC, Xuan R, Huang C. Redox Control of the Dormant Cancer Cell Life Cycle. Cells. 2021;10(10):2707.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Smith RL, Soeters MR, Wüst RCI, Houtkooper RH. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr Rev. 2018;39:489–517.

PubMed  PubMed Central  Article  Google Scholar 

Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discovery. 2020;19:39–56.

CAS  PubMed  Article  Google Scholar 

Cao Y. Adipocyte and lipid metabolism in cancer drug resistance. J Clin Investig. 2019;129:3006–17.

PubMed  PubMed Central  Article  Google Scholar 

Iwamoto H, Abe M, Yang Y, Cui D, Seki T, Nakamura M, Hosaka K, Lim S, Wu J, He X, et al. Cancer lipid metabolism confers antiangiogenic drug resistance. Cell Metabolism. 2018;28.

Yoshida GJ. Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res: CR. 2015;34:111.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Liu R, Lee J-H, Li J, Yu R, Tan L, Xia Y, Zheng Y, Bian X-L, Lorenzi PL, Chen Q, et al. Choline kinase alpha 2 acts as a protein kinase to promote lipolysis of lipid droplets. Mol Cell. 2021;81.

Liu R, Li J, Shao J, Lee J-H, Qiu X, Xiao Y, Zhang B, Hao Y, Li M, Chen Q. Innate immune response orchestrates phosphoribosyl pyrophosphate synthetases to support DNA repair. Cell Metab. 2021;33.

Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21:297–308.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kreuzaler P, Panina Y, Segal J, Yuneva M. Adapt and conquer: metabolic flexibility in cancer growth, invasion and evasion. Mol Metab. 2020;33.

Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64.

CAS  PubMed  Article  Google Scholar 

Luengo A, Li Z, Gui DY, Sullivan LB, Zagorulya M, Do BT, Ferreira R, Naamati A, Ali A, Lewis CA, et al. Increased demand for NAD relative to ATP drives aerobic glycolysis. Mol Cell. 2021;81.

Liu J, Zhang C, Hu W, Feng Z. Tumor suppressor p53 and metabolism. J Mol Cell Biol. 2019;11:284–92.

CAS  PubMed  Article  Google Scholar 

Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 2020;20:74–88.

CAS  PubMed  Article  Google Scholar 

Papagiannakopoulos T, Bauer MR, Davidson SM, Heimann M, Subbaraj L, Bhutkar A, Bartlebaugh J, Vander Heiden MG, Jacks T. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab. 2016;24:324–31.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 2017;66:789–800.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lin S-C, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018;27:299–313.

CAS  PubMed  Article  Google Scholar 

Labuschagne CF, Zani F, Vousden KH. Control of metabolism by p53: cancer and beyond. Biochim Biophys Acta. 2018;1870:32–42.

CAS  PubMed Central  Google Scholar 

Gomes AS, Ramos H, Soares J, Saraiva L. p53 and glucose metabolism: an orchestra to be directed in cancer therapy. Pharmacol Res. 2018;131:75–86.

CAS  PubMed  Article  Google Scholar 

Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 2015;17:351–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang Y, Yu G, Chu H, Wang X, Xiong L, Cai G, Liu R, Gao H, Tao B, Li W, et al. Macrophage-associated PGK1 phosphorylation promotes aerobic glycolysis and tumorigenesis. Mol Cell. 2018;71.

Park MK, Zhang L, Min K-W, Cho J-H, Yeh C-C, Moon H, Hormaechea-Agulla D, Mun H, Ko S, Lee JW, et al. NEAT1 is essential for metabolic changes that promote breast cancer growth and metastasis. Cell Metab. 2021;33.

Lin J, Xia L, Liang J, Han Y, Wang H, Oyang L, Tan S, Tian Y, Rao S, Chen X, et al. The roles of glucose metabolic reprogramming in chemo- and radio-resistance. J Exp Clin Cancer Res. 2019;38:218.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Botzer LE, Maman S, Sagi-Assif O, Meshel T, Nevo I, Yron I, Witz IP. Hexokinase 2 is a determinant of neuroblastoma metastasis. Br J Cancer. 2016;114:759–66.

PubMed  Article  CAS  Google Scholar 

Marcucci F, Rumio C. Glycolysis-induced drug resistance in tumors-A response to danger signals? Neoplasia. 2021;23:234–45.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wong T-L, Ng K-Y, Tan KV, Chan L-H, Zhou L, Che N, Hoo RLC, Lee TK, Richard S, Lo C-M, et al. CRAF methylation by PRMT6 regulates aerobic glycolysis-driven hepatocarcinogenesis via ERK-dependent PKM2 nuclear relocalization and activation. Hepatology (Baltimore, MD). 2020;71:1279–96.

CAS  Article  Google Scholar 

Ma L, Zong X. Metabolic symbiosis in chemoresistance: refocusing the role of aerobic glycolysis. Front Oncol. 2020;10:5.

留言 (0)

沒有登入
gif