Intriguing minerals: quartz and its polymorphic modifications

https://mrdata.usgs.gov/major-deposits/map-us.html (Accessed 21 Jan 2022)

Theophrastus, History of stones. Edited and translated by Sir John Hill. London, 2nd edition, 1774

Tomkief SI (1942) On the origin of the name quartz. Miner Mag 26:172–178

Google Scholar 

Agricola G (1530) Quarzum. in: Georgii Agricolae Medici Bermannus, Sive De Re Metallica, in aedibus Frobenianis Basileae 88, 129

Brown E (1685) Travels in divers parts of Europe… with some observations on the gold, silver, copper, quick silver mines. London, 2nd edition, p.170

Henckel JF (1725) Pyritologia oder Kiess-Historie. Leipzig. English translation: Pyritologia; or, a history of the pyrites, &c. London, 1757

https://en.wikipedia.org/wiki/Quartz (Accessed 21 Jan 2022)

https://de.wikipedia.org/wiki/Quarz (Accessed 21 Jan 2022)

http://webmineral.com/danaclass.shtml#.YU7gHrgzaUk (Accessed 21 Jan 2022)

http://www.webmineral.com/strunz.shtml#.YU7g8LgzaUk (Accessed 21 Jan 2022)

https://www.mindat.org/cim.php (Accessed 21 Jan 2022)

Weil JA (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys Chem Miner 10:149–165

CAS  Article  Google Scholar 

Weil JA (1993) A review of the EPR spectroscopy of the point defects in α-quartz: the decade 1982–1992. In: Helms CR, Deal BE (eds) Physics and Chemistry of SiO2 and the Si-SiO2 interface 2. Plenum Press, New York, pp 131–144

Götze J (2009) Chemistry, textures and physical properties of quartz—geological interpretation and technical application. Miner Mag 73:645–671

Article  CAS  Google Scholar 

https://serc.carleton.edu/details/images/32743.html (Accessed 21 Jan 2022)

Graetsch HA, Miehe G (1992) Crystal structure of moganite: a new structure type for silica. Eur J Miner 4:693–706

Article  Google Scholar 

https://www.mindat.org/min-3337.html (Accessed 21 Jan 2022)

http://www.quartzpage.de/gro_text.html (Accessed 21 Jan 2022)

http://www.quartzpage.de/crs_intro.html (Accessed 21 Jan 2022)

Hosaka M, Miyata T, Sunagawa I (1995) Growth and morphology of quartz crystals synthesized above the transition temperature. J Cryst Growth 152:300–306

CAS  Article  Google Scholar 

Rykart R (1984) Authigene quarz-kristalle. Lapis Mineralien Magazin: 9(6)

Rykart R (1995) Quarz- Monographie. Ott-Verlag – German Edition

https://www.mindat.org/photo-753794.html (Accessed 21 Jan 2022)

Lang AR (1965) Mapping Dauphiné and Brazil twins in quartz by X-ray topography. Appl Phys Lett 7:168–170

Article  Google Scholar 

McLaren AC, Phakey PP (1969) Diffraction contrast from Dauphiné twin boundaries in quartz. Phys Status Solidi 31:723–737

CAS  Article  Google Scholar 

Leydolt F (1855) Über eine neue Methode, die Structur und Zusammensetzung der Krystalle zu untersuchen, mit besonderer Berücksichtigung der Varietäten des rhomboedrischen Quarzes. Sitzungsberichte der mathematisch naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften 15:59–81

Google Scholar 

Van Goethem L, Van Landuyt J, Amelinckx S (1977) The α-β transition in amethyst quartz as studied by electron microscopy and diffraction. The interaction of Dauphiné with Brazil twins. Phys Status Solidi 41:129–137

Article  Google Scholar 

Weiss CS (1829) Über die herzförmig genannten Zwillingskrystalle von Kalkspath, und gewisse analoge von Quarz. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin 77‒87

Sunagawa I, Yasuda T (1983) Apparent re-entrant corner effect upon the morphologies of twinned crystals; a case study of quartz twinned according to Japanese twin law. J Cryst Growth 65:43–49

CAS  Article  Google Scholar 

https://opengeology.org/Mineralogy/6-igneous-rocks-and-silicate-minerals/ (Accessed 21 Jan 2022)

http://www.quartzpage.de/px/rc_br_joaquim_felicio_Q271_1_org.jpg (Accessed 21 Jan 2022)

http://www.quartzpage.de/crs_twins.html (Accessed 21 Jan 2022)

https://www.mindat.org/photo-266098.html (Accessed 21 Jan 2022)

Antao SM, Hassan I, Wang J, Lee PL, Toby BH (2008) State-of-the-art high-resolution powder X-Ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite. Can Mineral 46:1501–1509

CAS  Article  Google Scholar 

Kihara K (1990) An X-ray study of the temperature dependence of the quartz structure. Eur J Mineral 2:63–77

CAS  Article  Google Scholar 

Heaney PJ, Veblen DR (1991) Observations of the alpha-beta phase transition in quartz: a review of imaging and diffraction studies and some new results. Am Miner 76:1018–1032

CAS  Google Scholar 

Drees L, Wilding L, Smeck N, Senyaki A (1989) Silica in soils: quartz and disordered silica polymorphs. In: Dixon JP (ed) Minerals in soil environments. Soil Science Society of America, Madison, pp 913–975

Google Scholar 

http://www.quartzpage.de/gen_struct.html (Accessed 21 Jan 2022)

https://www.mindat.org/photo-751082.html (Accessed 21 Jan 2022)

Gibbs GV, Rosso KM, Teter DM, Boisen MB Jr, Bukowinski MST (1999) Model structures and properties of the electron density distribution for low quartz at pressure: a study of the SiO bond. J Mol Struc 485–486:13–25

Article  Google Scholar 

Smyth JR (1989) Electrostatic characterization of oxygen sites in minerals. Geochim Cosmochim Acta 53:1101–1110

CAS  Article  Google Scholar 

Cohen RE (1994) Silica. Mineralogical Society, Washington, p 369

Book  Google Scholar 

Prencipe M, Nestola F (2007) Minerals at high pressure. Mechanics of compression from quantum mechanical calculations in a case study: the beryl (Al4Be6Si12O36). Phys Chem Miner 30:471–479

Google Scholar 

Prencipe M, Tribaudino M, Nestola F (2002) Charge density analysis of spodumene (LiAlSi2O6) from ab initio Hartree-Fock calculations. Phys Chem Miner 30:606–614

Article  CAS  Google Scholar 

Harrison WA (1978) Is silicon dioxide covalent or ionic? In: Pantelides ST (ed) The Physics of SiO2 and its interfaces, p. 105 Chapter 2. Pergamon Press, New York

Google Scholar 

Stewart RF, Whitehead MA, Donnay G (1980) The ionicity of the Si-O bond in low quartz. Am Min 65:324–326

CAS  Google Scholar 

Gibbs GV, Wallace AF, Cox DF, Downs RT, Ross NL, Rosso KM (2009) Bonded interactions in silica polymorphs, silicates, and siloxane molecules. Am Miner 94:1085–1102

CAS  Article  Google Scholar 

Pauling L (1939) The nature of the chemical bond. Cornell University Press, Ithaca

Google Scholar 

Sanders MJ, Leslie M, Catlow CRA (1984) Interatomic potentials for SiO2. J Chem SocChem Commun. https://doi.org/10.1039/c39840001271

Article  Google Scholar 

Jackson MD, Gordon RG (1988) MEG investigation of low pressure silica—Shell model for polarization. Phys Chem Miner 16:212–220

CAS  Article  Google Scholar 

Burnham CW (1990) The ionic model: perceptions and realities in mineralogy. Am Miner 73:443–463

Google Scholar 

Phillips JC (1970) Ionicity of the chemical bond in crystals. Rev Mod Phys 42:317–356

CAS  Article  Google Scholar 

Vempati CS, Jacobs PWM (1983) Crystal potentials for alpha-quartz. Radiat Eff Defects Solids 73:285–289

CAS  Article  Google Scholar 

Schnöckel H (1978) IR spectroscopic detection of molecular SiO2. Angew Chem Int Ed 17:616–617

Article  Google Scholar 

Schnöckel H (1996) In: Corriu R, Jutzi P (eds) Tailor-made silicon-oxygen compounds: from molecules to materials. Vieweg, Braunschweig, pp 131–140

Maier G, Reisenauer HP, Egenolf H, Glatthaar J (2003) Investigations on the reactivity of atomic silicon: a playground for matrix isolation spectroscopy. In: Jutzi P and Schubert U (eds) Silicon chemistry: from the atom to extended systems. Wiley-VCH Verlag, Weinheim, pp 4–19

Weil R (1931) Quelques observations concernant la structure du quartz. Compte Rendu 1er Réunion de l'Institut d'Optique: 2–11

Bambauer HU (1961) Spurenelementgehalte und γ-Farbzentren in quarzen aus zerrklüften der Schweizer Alpen. Schweiz Min Petr Mitt 41:335–369

Google Scholar 

Bambauer HU, Brunner GO, Laves F (1962) Wasserstoff gehalte in quarzen aus zerrklüften der Schweizer Alpen und deutung ihrer regionalen abhängigkeit. Schweiz Min Petr Mitt 42:221–236

Google Scholar 

Bambauer HU, Brunner GO, Laves F (1963) Merkmale des OH-spektrums alpiner quarze (3 µ-gebiet). Schweiz Min Petr Mitt 43:259–268

CAS  Google Scholar 

Hertweck B, Beran A, Niedermayr G (1998) IR-spektroskopische untersuchungen des OH-Gehaltes alpiner kluftquarze aus österreichischen vorkommen. Mitteilungen der österreichischen Mineralogischen Gesellschaft 143:304–306

Google Scholar 

Friedlaender C (1951) Untersuchung über die eignung alpiner quarze für piezoelektrische zwecke. Beiträge zur geologie der Schweiz, Geotechnische Serie, Lieferung 29, 98 S

Roedder E (1981) Origin of fluid inclusions and changes that occur after trapping. Mineralogical Association of Canada, Short course handbook 6:101–137

Van den Kerkhof AM, Hein UF (2001) Fluid inclusion petrography 55:27–47

Roedder E (1984) Fluid inclusions. Reviews in Mineralogy, 12, Mineralogical Society of America, Chantilly, Virginia, USA, pp 645

Shepherd T, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie, Glasgow, p 239

Google Scholar 

Leeder O, Thomas R, Klemm W (1987) Einschlüsse in ineralen. VEB Deutscher Grundstoffverlag, Leipzig

Google Scholar 

Tasev G, Serafimovski T, Dolenec M, Rogan Šmuc N (2019) Contribution to understanding of ore fluids in the Zletovo mine based on fluid inclusion data. RMZ-Mater Geoenviron 66:75–86

Article  CAS  Google Scholar 

Kostov RI, Bershov LV (1987) Systematics of paramagnetic electron-hole centres in natural quartz, Izv Akad Nauk USSR. Ser Geol 7:80–87 (in Russian)

Google Scholar 

Weil JA (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys Chem Miner 10:149–165

CAS  Article  Google Scholar 

Weil JA (1993) A review of the EPR spectroscopy of the point defects in a-quartz: The decade 1982–1992. In: Helms CR, Deal BE (eds) Physics and chemistry of SiO2 and the SiSiO2 interface 2. Plenum Press, New York, pp 131‒144

Stevens-Kalceff MA, Phillips MR, Moon AR Kalceff W (2000) Cathodoluminescence microcharacterisation of silicon dioxide polymorphs. In: Pagel, M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer Verlag, Berlin, pp 193‒224

Sjöberg S (1996) Silica in aqueous environments. J Non Cryst Solids 196:51–57

Article  Google Scholar 

Exley C (1998) Silicon in life: a bioinorganic solution to bioorganic essentiality. J Inorg Biochem 69:139–144

CAS  Article  Google Scholar 

Exley C (2015) A possible mechanism of biological silicification in plants, Front Plant Sci 6: Article 853

Choppin GR, Pathak P, Thakur P (2008) Polymerization and complexation behavior of silicic acid: a review. Main Group Met Chem 31:53–71

CAS  Article  Google Scholar 

Iler RK (1979) In: The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. John Wiley & Sons Inc, New York

Google Scholar 

Traexler KA, Utsunomiya S, Kersting AB, Ewing RC (2004) Mat Res Soc Symp Proc, 807

Karkanas P, Bar-Yosef O, Goldberg P, Weiner S (2000) Diagenesis in prehistoric caves: the use of minerals that form in situ to assess the completeness of the archaeological record. J Archaeol Sci 27:915–929

Article  Google Scholar 

O'Brien MCM (1955) The structure of the colour centres in smoky quartz. Proceedings of the Royal Society of London. Series A, Math Phys Sci 231: 404–414

Lehmann G, Moore WJ (1966) Color center in amethyst quartz. Science 152:1061–1062

CAS  PubMed  Article  Google Scholar 

Maschmeyer D, Niemann K, Hake K, Lehmann G, Räuber A (1980) Two modified smoky quartz centres in natural citrine. Phys Chem Miner 6:145–156

CAS  Article  Google Scholar 

Maschmeyer D, Lehmann G (1983) A trapped-hole center causing rose coloration of natural quartz. Z Kristallogr 163:181–186

CAS  Article  Google Scholar 

Makreski P, Jovanovski G, Stafilov T, Boev B (2004) Minerals from Macedonia XII. The dependence of quartz and opal color on trace element composition- AAS, FT IR and micro Raman spectroscopy study. Bull Chem Technol Maced 23:171–184

留言 (0)

沒有登入
gif