Introduction to electrochemical science using Legendre transforms

Chimowitz EH (2005) Introduction to critical phenomena in fluids. Oxford University Press, USA, pp 5–9

Book  Google Scholar 

Tabatabaian M, Rajput RK, (2018) Advanced Thermodynamics - Fundamentals - Mathematics – Applications, Mercury Learning and Information, USA pp 7–8, 47–52

Bejan A (2016) Advanced engineering thermodynamics (4th Edition)—4.1 simple system. Wiley, USA, pp 154–163

Google Scholar 

Láng GG (2015) Basic interfacial thermodynamics and related mathematical background. ChemTexts 1:16. https://doi.org/10.1007/s40828-015-0015-z

Article  Google Scholar 

Callen HB (1985) Thermodynamics and an introduction to thermostatics. Wiley, USA, p 13

Google Scholar 

Alberty RA (1994) Legendre transforms in chemical thermodynamics. Chem Rev 94:1457–1482. https://doi.org/10.1021/cr00030a001

Article  CAS  Google Scholar 

Alberty RA (1995) Chemical reactions in phases at different electric potentials. J Electrochem Soc 142:120–124. https://doi.org/10.1149/1.2043849

Article  CAS  Google Scholar 

Alberty RA (2001) Use of legendre transforms in chemical thermodynamics (IUPAC Technical Report). Pure Appl Chem 73:1349–1380. https://doi.org/10.1351/pac200173081349

Article  CAS  Google Scholar 

Alberty RA (2002) Use of Legendre transforms in chemical thermodynamics: International union of pure and applied chemistry, physical chemistry division, commission on thermodynamics. J Chem Thermodyn 34:1787–1823. https://doi.org/10.1016/S0021-9614(02)00170-2

Article  CAS  Google Scholar 

Boljanovic V (2016) Applied mathematical and physical formulas (2nd edition)—17 electricity and magnetism. Industrial Press, USA, pp 377, 380

Google Scholar 

Flores-Camacho FN, Ulloa-Lugo N, Covarrubias-Martínez H (2015) The concept of entropy, from its origins to teachers. Rev Mex Fis 69:69–80

Google Scholar 

“Electrochemical potential” in IUPAC Compendium of chemical terminology, 3rd ed. International union of pure and applied chemistry; (2006). Consulted: August 3, 2024, https://doi.org/10.1351/goldbook.E01945

Inzelt G (2024) Loose building blocks in the edifice of electrochemistry in a historical perspective and their impact on the teaching. J Solid State Electrochem 28:1171–1189. https://doi.org/10.1007/s10008-023-05502-0

Article  CAS  Google Scholar 

Inzelt G (2015) Crossing the bridge between thermodynamics and electrochemistry. From the potential of the cell reaction to the electrode potential. ChemTexts 1:2. https://doi.org/10.1007/s40828-014-0002-9

Article  Google Scholar 

Guggenheim EA (1929) The conceptions of electrical potential difference between two phases and the individual activities of ions. J Phys Chem 33:842–849. https://doi.org/10.1021/j150300a003

Article  CAS  Google Scholar 

Fletcher S (2020) Electrochemical potentials from first principles. J Solid State Electrochem 24:3029–3038. https://doi.org/10.1007/s10008-020-04740-w

Article  CAS  Google Scholar 

Seeber R, Zanardi C, Inzelt G (2015) Links between electrochemical thermodynamics and kinetics. ChemTexts 1:18. https://doi.org/10.1007/s40828-015-0018-9

Article  Google Scholar 

Bockris JO´M, Reddy AKN, (1973) Volume 2. Plenum Publishing Corp., USA, pp 685, 669, 688–690, 693–701, 710, 713, 207, 217, 746.

McQuarrie DA (2003) Mathematical methods, for scientists and engineers. University Science Books, USA, p 519

Google Scholar 

Knuiman JT, Barneveld PA, Besseling NA (2012) On the relation between the fundamental equation of thermodynamics and the energy balance equation in the context of closed and open systems. J Chem Educ 89:968–972. https://doi.org/10.1021/ed200405k

Article  CAS  Google Scholar 

Fletcher S (2014) Surface thermodynamics reconsidered Derivation of the Gokhshtein relations from the Gibbs potential and a new approach to surface stress. J Solid State Electrochem 18:1231–1238. https://doi.org/10.1007/s10008-013-2287-9

Article  CAS  Google Scholar 

Schmickler W, Santos E (2010) Interfacial electrochemistry, 2nd edn. Springer-Verlag, Germany, pp 78–82

Book  Google Scholar 

Láng GG (2020) Some remarks to the derivation of the “generalized Lippmann.” J Solid State Electrochem 24:3039–3047. https://doi.org/10.1007/s10008-020-04745-5

Article  CAS  Google Scholar 

Larios-Durán ER, Bárcena-Soto M (2024) Are the entropy changes important in an electrochemical process? J Solid State Electrochem 28:995–1006. https://doi.org/10.1007/s10008-023-05787-1

Article  CAS  Google Scholar 

Cats P, Sitlapersad RS, den Otter WK, Thornton AR, van Roij R (2022) Capacitance and structure of electric double layers: comparing Brownian dynamics and classical density functional theory. J Solution Chem 51:296–319. https://doi.org/10.1007/s10953-021-01090-7

Article  CAS  Google Scholar 

Bard AJ, Faulkner LR, White HS (2001) Electrochemical methods. Fundamentals and applications, 2nd edn. Wiley, Cham

Google Scholar 

Karyakin AA (2023) Educational problems in electrochemical thermodynamics. J Electroanal Chem 950:117886. https://doi.org/10.1016/j.jelechem.2023.117886

Article  CAS  Google Scholar 

Santos E, Schmickler W (2024) The inner potential in electrochemistry. J Solid State Electrochem 28:1319–1322. https://doi.org/10.1007/s10008-023-05521-x

Article  CAS  Google Scholar 

Kornyshev AA, Spohr E, Vorotyntsev MA (2007) Electrochemical interfaces: at the border line. Encycl Electrochem. https://doi.org/10.1002/9783527610426.bard010201

Article  Google Scholar 

留言 (0)

沒有登入
gif