Das AK, Das M, Das A (2020) Fundamental Concepts of Inorganic Chemistry - Vol. 1 (3rd Edn.). CBS Publishers & Distributors, New Delhi, pp. 201–203. ISBN: 978–93–89566–97–3
Das AK, Das M (2019) Fundamental Concepts of Inorganic Chemistry – Vol. 7 (1st Edn. 3rd Reprint). CBS Publishers & Distributors, New Delhi, pp. 1992–2002. ISBN: 978–81–239–2354–3.
Wald G (1968) The molecular basis of visual excitation. Nature 219:800–807. https://doi.org/10.1038/219800a0
Article CAS PubMed Google Scholar
Das A, Das U, Das AK (2022) Present state of knowledge of chemistry of our vision: photoreceptor molecules and vision cycle. Asian J Org Med Chem 7:309–320. https://doi.org/10.14233/ajomc.2022.AJOMC-P409
Das AK, Das A, Das (2021) Biophysical, Bioorganic & Bioinorganic Chemistry (2nd Edn.). Books & Allied (P) Ltd, Kolkata, pp 194–205. ISBN: 978-81-948455-2-2
Berg JM, Tymoczko JL, Stryer L (2012) Biochemistry (7th Edn.). W. H. Freeman and Company, New York, pp. 1004–1009. ISBN: 10:1-4292-7635-5
Gruhl T et al (2023) Ultrafast structural changes direct the first molecular events of vision. Nature 615:939–944. https://doi.org/10.1038/s41586-023-05863-6
Article CAS PubMed PubMed Central Google Scholar
Schmidt M, Stojković EA (2023) Earliest molecular events of vision revealed. Nature 615:3802–3803. https://doi.org/10.1038/d41586-023-00504-4
Rando RR (2001) The biochemistry of the visual cycle. Chem Rev 101:1881–1896. https://doi.org/10.1021/cr960141c
Article CAS PubMed Google Scholar
Kandori H, Shichida Y, Yoshizawa T (2001) Photoisomerization in rhodopsin Biochemistry (Moscow) 66:1197–1209
Article CAS PubMed Google Scholar
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H (2014) Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 114:126–163. https://doi.org/10.1021/cr4003769
Article CAS PubMed Google Scholar
Kiser PD, Golczak M, Palczewski K (2014) Chemistry of the retinoid (visual) cycle. Chem Rev 114:194–232. https://doi.org/10.1021/cr400107q
Article CAS PubMed Google Scholar
Smith SO (2010) Structure and activation of the visual pigment rhodopsin. Annu Rev Biophys 39:309–328. https://doi.org/10.1146/annurev-biophys-101209-104901
Article CAS PubMed Google Scholar
Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, LeTrong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745. https://doi.org/10.1126/science.289.5480.739
Article CAS PubMed Google Scholar
Zhukovsky EA, Oprian DD (1989) Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science 246:928–930. https://doi.org/10.1126/science.2573154
Article CAS PubMed Google Scholar
Sakmar TP, Franke RR, Khorana HG (1989) Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci (PNAS) USA 86:8309–8313. https://doi.org/10.1073/pnas.86.21.8309
Clayden J, Greeves N, Warren S (2012) Organic Chemistry (2nd Edn.). Oxford University Press. p. 681. ISBN: 978–0–19–927029–3
Deupi X, Edwards P, Singhal A, Nickle B, Oprian D, Schertler G, Standfuss J (2012) Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Proc Natl Acad Sci (PNAS) USA 109(1):119–124. https://doi.org/10.1073/pnas.1114089108.
Schoenlein RW, Peteanu LA, Mathies RA, Shank CV (1991) The first step in vision: femtosecond isomerization of rhodopsin. Science 254:412–415. https://doi.org/10.1126/science.1925597
Article CAS PubMed Google Scholar
Kochendoerfer GG, Mathies RA (1995) Ultrafast spectroscopy of rhodopsins—photochemistry at its best! Isr J Chem 35:211–226. https://doi.org/10.1002/ijch.199500028
Choi EH, Daruwalla A, Suh S, Leinonen H, Palczewski K (2021) Retinoids in the visual cycle: role of the retinal G protein-coupled receptor. J Lipid Res 62:100040. https://doi.org/10.1194/jlr.tr120000850
Article CAS PubMed PubMed Central Google Scholar
Satyanaryana U (2002) Biochemistry (2nd Edn. ). Books & Allied (P) Ltd, Kolkata, pp. 118–121. ISBN: 81–87134–80–1
Wolf G (2005) Function of the protein RPE65 in the visual cycle. Nutr Rev 63:97–100. https://doi.org/10.1111/j.1753-4887.2005.tb00127.x
Kiser PD, Palczewski K (2010) Membrane-binding and enzymatic properties of RPE65. Progr Retin Eye Res 29:428–442. https://doi.org/10.1016/j.preteyeres.2010.03.002
Radu RA, Hu J, Peng J, Bok D, Mata NL, Travis GH (2008) Retinal pigment epithelium-retinal G protein receptoropsin mediates light-dependent translocation of all-transretinyl esters for synthesis of visual chromophore in retinal pigment epithelial cell. J Biol Chem 283:19730–19738. https://doi.org/10.1074/jbc.M801288200
Article CAS PubMed PubMed Central Google Scholar
Batten ML, Imanishi Y, Maeda T, Tu DC, Moise AR, Bronson D, Possin D, Van Gelder RN, Baehr W, Palczewski K (2004) Lecithin-retinol acyltransferase is essential for accumulation of all-trans-retinyl esters in the eye and in the liver. J Biol Chem 279:10422–10432. https://doi.org/10.1074/jbc.M312410200
Article CAS PubMed Google Scholar
Wenzel A, Oberhauser V, Pugh EN, Lamb TD Jr, Grimm C, Samardzija M, Fahl E, Seeliger MW, Reme CE, von Lintig J (2005) The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light. J Biol Chem 280:29874–29884. https://doi.org/10.1074/jbc.m503603200
Article CAS PubMed Google Scholar
Jin M, Li S, Moghrabi WN, Sun H, Travis GH (2005) RPE65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 122:449–459. https://doi.org/10.1016/j.cell.2005.06.042
Article CAS PubMed PubMed Central Google Scholar
Moiseyev G, Chen Y, Takahashi Y, Wu BX, Ma JX (2005) RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci (PNAS) USA 102: 12413–12418. https://doi.org/10.1073/pnas.0503460102
Palczewski K, Kiser PD (2020) Shedding new light on the generation of the visual chromophore. Proc Natl Acad Sci (PNAS) USA 117: 19629–19638. https://doi.org/10.1073/pnas.2008211117
Zhang J, Choi EH, Tworak A, Salom D, Leinonen H, Sander CL, Hoang TV, Handa JT, Blackshaw S, Palczewska G, Kiser PD, Palczewski K (2019) Photic generation of 11-cis-retinal in bovine retinal pigment epithelium. J Biol Chem 294(50):19137–19154. https://doi.org/10.1074/jbc.RA119.011169
Article CAS PubMed PubMed Central Google Scholar
Tworak A, Kolesnikov AV, Hong JD, Choi EH, Luu JC, Palczewska G, Dong Z, Lewandowski D, Brooks MJ, Campello L, Swaroop A, Kiser PD, Kefalov VJ, Palczewski K (2023) Rapid RGR-dependent visual pigment recycling is mediated by the RPE and specialized Müller glia. Cell Rep 42(8):112982. https://doi.org/10.1016/j.celrep.2023.112982
Article CAS PubMed PubMed Central Google Scholar
Jackson GR, Owsley C, McGwin G Jr (1999) Aging and dark adaptation. Vision Res 39(23):3975–3982. https://doi.org/10.1016/s0042-6989(99)00092-9
Article CAS PubMed Google Scholar
Nigalye AK, Hess K, Pundlik SJ, Jeffrey BG, Cukras CA, Husain D (2022) Dark adaptation and its role in age-related macular degeneration. J Clin Med 11(5):1358. https://doi.org/10.3390/jcm11051358
Article CAS PubMed PubMed Central Google Scholar
Merbs S, Nathans J (1992) Absorption spectra of human cone pigments. Nature 356:433–435. https://doi.org/10.1038/356433a0
Article CAS PubMed Google Scholar
Nathans J (1990) Determinants of visual pigment absorbance: identification of the retinylidene Schiff’s base counterion in bovine rhodopsin. Biochemistry 29(41):9746–9752. https://doi.org/10.1021/bi00493a034
Article CAS PubMed Google Scholar
Shtyrov AA, Nikolaev DM, Mironov VN, Vasin AV, Panov MS, Tveryanovich YS, Ryazantsev MN (2021) Simple models to study spectral properties of microbial and animal rhodopsins: evaluation of the electrostatic effect of charged and polar residues on the first absorption band maxima. Int J Mol Sci 22(6):3029. https://doi.org/10.3390/ijms22063029
Article CAS PubMed PubMed Central Google Scholar
Zhou X, Sundholm D, Wesołowski TA, Kaila VR (2014) Spectral tuning of rhodopsin and visual cone pigments. J Am Chem Soc 36(7):2723–2726. https://doi.org/10.1021/ja411864m
Yokoyama S, Yang H, Starmer WT (2008) Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates. Genetics 179(4):2037–2043. https://doi.org/10.1534/genetics.108.090449
Article PubMed PubMed Central Google Scholar
Hunt DM, Carvalho LS, Cowing JA, Davies WL (2009) Evolution and spectral tuning of visual pigments in birds and mammals. Philos Trans R Soc Lond B Biol Sci 364(1531):2941–2955. https://doi.org/10.1098/rstb.2009.0044
Article CAS PubMed PubMed Central Google Scholar
Lin SW, Kochendoerfer GG, Carroll KS, Wang D, Mathies RA, Sakmar TP (1998) Mechanisms of spectral tuning in blue cone visual pigments. Visible and raman spectroscopy of blue-shifted rhodopsin mutants. J Biol Chem 273(38):24583–24591. https://doi.org/10.1074/jbc.273.38.24583
Article CAS PubMed Google Scholar
Yokoyama S (2008) Evolution of dim-light and color vision pigments. Annu Rev Genomics Hum Genet 9:259–282. https://doi.org/10.1146/annurev.genom.9.081307.164228
留言 (0)