Targeting SMYD2 inhibits angiogenesis and increases the efficiency of apatinib by suppressing EGFL7 in colorectal cancer

Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A (2020) Colorectal cancer statistics, 2020. CA Cancer J Clin 70(3):145–164. https://doi.org/10.3322/caac.21601

Article  PubMed  Google Scholar 

Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

CAS  Article  Google Scholar 

Cohen MH, Gootenberg J, Keegan P, Pazdur R (2007) FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist 12(6):713–718. https://doi.org/10.1634/theoncologist.12-6-713

CAS  Article  PubMed  Google Scholar 

Roviello G, Ravelli A, Polom K, Petrioli R, Marano L, Marrelli D, Roviello F, Generali D (2016) Apatinib: a novel receptor tyrosine kinase inhibitor for the treatment of gastric cancer. Cancer Lett 372(2):187–191. https://doi.org/10.1016/j.canlet.2016.01.014

CAS  Article  PubMed  Google Scholar 

Burgermeister E, Battaglin F, Eladly F, Wu W, Herweck F, Schulte N, Betge J, Hartel N, Kather JN, Weis CA, Gaiser T, Marx A, Weiss C, Hofheinz R, Miller IS, Loupakis F, Lenz HJ, Byrne AT, Ebert MP (2019) Aryl hydrocarbon receptor nuclear translocator-like (ARNTL/BMAL1) is associated with bevacizumab resistance in colorectal cancer via regulation of vascular endothelial growth factor A. EBioMedicine 45:139–154. https://doi.org/10.1016/j.ebiom.2019.07.004

Article  PubMed  PubMed Central  Google Scholar 

Goel A, Boland CR (2012) Epigenetics of colorectal cancer. Gastroenterology 143(6):1442–1460. https://doi.org/10.1053/j.gastro.2012.09.032

CAS  Article  PubMed  Google Scholar 

Brown MA, Sims RJ 3rd, Gottlieb PD, Tucker PW (2006) Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer 5:26. https://doi.org/10.1186/1476-4598-5-26

CAS  Article  PubMed  PubMed Central  Google Scholar 

Abu-Farha M, Lambert JP, Al-Madhoun AS, Elisma F, Skerjanc IS, Figeys D (2008) The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteomics 7(3):560–572. https://doi.org/10.1074/mcp.M700271-MCP200

CAS  Article  PubMed  Google Scholar 

Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T, Berger SL (2006) Repression of p53 activity by Smyd2-mediated methylation. Nature 444(7119):629–632. https://doi.org/10.1038/nature05287

CAS  Article  PubMed  Google Scholar 

Cho HS, Hayami S, Toyokawa G, Maejima K, Yamane Y, Suzuki T, Dohmae N, Kogure M, Kang D, Neal DE, Ponder BA, Yamaue H, Nakamura Y, Hamamoto R (2012) RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation. Neoplasia 14(6):476–486. https://doi.org/10.1593/neo.12656

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zeng Y, Qiu R, Yang Y, Gao T, Zheng Y, Huang W, Gao J, Zhang K, Liu R, Wang S, Hou Y, Yu W, Leng S, Feng D, Liu W, Zhang X, Wang Y (2019) Regulation of EZH2 by SMYD2-mediated lysine methylation is implicated in tumorigenesis. Cell Rep 29(6):1482–1498. https://doi.org/10.1016/j.celrep.2019.10.004

CAS  Article  PubMed  Google Scholar 

Hamamoto R, Toyokawa G, Nakakido M, Ueda K, Nakamura Y (2014) SMYD2-dependent HSP90 methylation promotes cancer cell proliferation by regulating the chaperone complex formation. Cancer Lett 351(1):126–133. https://doi.org/10.1016/j.canlet.2014.05.014

CAS  Article  PubMed  Google Scholar 

Obermann WMJ (2018) A motif in HSP90 and P23 that links molecular chaperones to efficient estrogen receptor alpha methylation by the lysine methyltransferase SMYD2. J Biol Chem 293(42):16479–16487. https://doi.org/10.1074/jbc.RA118.003578

CAS  Article  PubMed  PubMed Central  Google Scholar 

Nakakido M, Deng Z, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R (2015) Dysregulation of AKT pathway by SMYD2-mediated lysine methylation on PTEN. Neoplasia 17(4):367–373. https://doi.org/10.1016/j.neo.2015.03.002

CAS  Article  PubMed  PubMed Central  Google Scholar 

Piao L, Kang D, Suzuki T, Masuda A, Dohmae N, Nakamura Y, Hamamoto R (2014) The histone methyltransferase SMYD2 methylates PARP1 and promotes polyADP-ribosylation activity in cancer cells. Neoplasia 16(3):257–264. https://doi.org/10.1016/j.neo.2014.03.002

CAS  Article  PubMed  PubMed Central  Google Scholar 

Egorova KS, Olenkina OM, Olenina LV (2010) Lysine methylation of nonhistone proteins is a way to regulate their stability and function. Biochemistry (Mosc) 75(5):535–548. https://doi.org/10.1134/s0006297910050019

CAS  Article  Google Scholar 

Yan L, Ding B, Liu H, Zhang Y, Zeng J, Hu J, Yao W, Yu G, An R, Chen Z, Ye Z, Xing J, Xiao K, Wu L, Xu H (2019) Inhibition of SMYD2 suppresses tumor progression by down-regulating microRNA-125b and attenuates multi-drug resistance in renal cell carcinoma. Theranostics 9(26):8377–8391. https://doi.org/10.7150/thno.37628

CAS  Article  PubMed  PubMed Central  Google Scholar 

Meng F, Liu X, Lin C, Xu L, Liu J, Zhang P, Zhang X, Song J, Yan Y, Ren Z, Zhang Y (2020) SMYD2 suppresses APC2 expression to activate the Wnt/β-catenin pathway and promotes epithelial-mesenchymal transition in colorectal cancer. Am J Cancer Res 10(3):997–1011

CAS  PubMed  PubMed Central  Google Scholar 

Creamer D, Allen MH, Sousa A, Poston R, Barker JN (1997) Localization of endothelial proliferation and microvascular expansion in active plaque psoriasis. Br J Dermatol 136(6):859–865

CAS  Article  Google Scholar 

Fan C, Yang LY, Wu F, Tao YM, Liu LS, Zhang JF, He YN, Tang LL, Chen GD, Guo L (2013) The expression of Egfl7 in human normal tissues and epithelial tumors. Int J Biol Markers 28(1):71–83. https://doi.org/10.5301/jbm.2013.10568

CAS  Article  PubMed  Google Scholar 

Nichol D, Shawber C, Fitch MJ, Bambino K, Sharma A, Kitajewski J, Stuhlmann H (2010) Impaired angiogenesis and altered Notch signaling in mice overexpressing endothelial Egfl7. Blood 116(26):6133–6143. https://doi.org/10.1182/blood-2010-03-274860

CAS  Article  PubMed  PubMed Central  Google Scholar 

Xu Y, Wu W, Han Q, Wang Y, Li C, Zhang P, Xu H (2019) Post-translational modification control of RNA-binding protein hnRNPK function. Open Biol 9(3):180239. https://doi.org/10.1098/rsob.180239

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lv Y, Shi Y, Han Q, Dai G (2017) Histone demethylase PHF8 accelerates the progression of colorectal cancer and can be regulated by miR-488 in vitro. Mol Med Rep 16(4):4437–4444. https://doi.org/10.3892/mmr.2017.7130

CAS  Article  PubMed  PubMed Central  Google Scholar 

Liu Q, Pang J, Wang LA, Huang Z, Xu J, Yang X, Xie Q, Huang Y, Tang T, Tong D, Liu G, Wang L, Zhang D, Ma Q, Xiao H, Lan W, Qin J, Jiang J (2021) Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2. J Pathol 253(1):106–118. https://doi.org/10.1002/path.5557

CAS  Article  PubMed  Google Scholar 

Feng W, Yonezawa M, Ye J, Jenuwein T, Grummt I (2010) PHF8 activates transcription of rRNA genes through H3K4me3 binding and H3K9me1/2 demethylation. Nat Struct Mol Biol 17(4):445–450. https://doi.org/10.1038/nsmb.1778

CAS  Article  PubMed  Google Scholar 

Zhang H (2015) Apatinib for molecular targeted therapy in tumor. Drug Des Devel Ther 9:6075–6081. https://doi.org/10.2147/DDDT.S97235

CAS  Article  PubMed  PubMed Central  Google Scholar 

Huang G, Chen L (2008) Tumor vasculature and microenvironment normalization: a possible mechanism of antiangiogenesis therapy. Cancer Biother Radiopharm 23(5):661–667. https://doi.org/10.1089/cbr.2008.0492

CAS  Article  PubMed  Google Scholar 

Viallard C, Larrivee B (2017) Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 20(4):409–426. https://doi.org/10.1007/s10456-017-9562-9

CAS  Article  PubMed  Google Scholar 

Hong G, Kuek V, Shi J, Zhou L, Han X, He W, Tickner J, Qiu H, Wei Q, Xu J (2018) EGFL7: master regulator of cancer pathogenesis, angiogenesis and an emerging mediator of bone homeostasis. J Cell Physiol 233(11):8526–8537. https://doi.org/10.1002/jcp.26792

CAS  Article  PubMed  Google Scholar 

Usuba R, Pauty J, Soncin F, Matsunaga YT (2019) EGFL7 regulates sprouting angiogenesis and endothelial integrity in a human blood vessel model. Biomaterials 197:305–316. https://doi.org/10.1016/j.biomaterials.2019.01.022

CAS  Article  PubMed  Google Scholar 

Fitch MJ, Campagnolo L, Kuhnert F, Stuhlmann H (2004) Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells. Dev Dyn 230(2):316–324. https://doi.org/10.1002/dvdy.20063

CAS  Article  PubMed  PubMed Central  Google Scholar 

Nichol D, Stuhlmann H (2012) EGFL7: a unique angiogenic signaling factor in vascular development and disease. Blood 119(6):1345–1352. https://doi.org/10.1182/blood-2011-10-322446

CAS  Article  PubMed  PubMed Central  Google Scholar 

Richter A, Alexdottir MS, Magnus SH, Richter TR, Morikawa M, Zwijsen A, Valdimarsdottir G (2019) EGFL7 mediates BMP9-induced sprouting angiogenesis of endothelial cells derived from human embryonic stem cells. Stem cell reports 12(6):1250–1259. https://doi.org/10.1016/j.stemcr.2019.04.022

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ostareck-Lederer A, Ostareck DH, Cans C, Neubauer G, Bomsztyk K, Superti-Furga G, Hentze MW (2002) c-Src-mediated phosphorylation of hnRNP K drives translational activation of specifically silenced mRNAs. Mol Cell Biol 22(13):4535–4543. https://doi.org/10.1128/mcb.22.13.4535-4543.2002

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gal J, Chen J, Na DY, Tichacek L, Barnett KR, Zhu H (2019) The acetylation of lysine-376 of G3BP1 regulates RNA binding and stress GRANULE Dynamics. Mol Cell Biol. http

留言 (0)

沒有登入
gif