Intervertebral disc degeneration is rescued by TGFβ/BMP signaling modulation in an ex vivo filamin B mouse model

Al Kaissi, A., Ghachem, M. B., Nassib, N., Ben Chehida, F. & Kozlowski, K. Spondylocarpotarsal synostosis syndrome (with a posterior midline unsegmented bar). Skelet. Radiol. 34, 364–366 (2005).

CAS  Article  Google Scholar 

Mangaraj, S., Choudhury, A. K., Singh, M., Patro, D. & Baliarsinha, A. K. Spondylocarpotarsal synostosis syndrome. A rare case of short stature and congenital scoliosis. Clin. Cases Min. Bone Metab. 14, 258–261 (2017).

Article  Google Scholar 

Mitter, D., Krakow, D., Farrington-Rock, C. & Meinecke, P. Expanded clinical spectrum of spondylocarpotarsal synostosis syndrome and possible manifestation in a heterozygous father. Am. J. Med Genet A 146A, 779–783 (2008).

PubMed  Article  Google Scholar 

Robertson, S. In GeneReviews(R) (eds M. P. Adam et al.) (1993).

Salian, S. et al. Seven additional families with spondylocarpotarsal synostosis syndrome with novel biallelic deleterious variants in FLNB. Clin. Genet 94, 159–164 (2018).

CAS  PubMed  Article  Google Scholar 

Yang, C. F. et al. Filamin B loss-of-function mutation in dimerization domain causes autosomal-recessive spondylocarpotarsal synostosis syndrome with rib anomalies. Hum. Mutat. 38, 540–547 (2017).

CAS  PubMed  Article  Google Scholar 

Krakow, D. et al. Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Nat. Genet 36, 405–410 (2004).

CAS  PubMed  Article  Google Scholar 

Breitling, M., Lemire, E. G. & Rabin, M. Spondylocarpotarsal synostosis syndrome: MRI evaluation of vertebral and disk malformation. Pediatr. Radiol. 36, 866–869 (2006).

PubMed  Article  Google Scholar 

Feng, Y. & Walsh, C. A. The many faces of filamin: a versatile molecular scaffold for cell motility and signalling. Nat. cell Biol. 6, 1034–1038 (2004).

CAS  PubMed  Article  Google Scholar 

Huelsmann, S., Rintanen, N., Sethi, R., Brown, N. H. & Ylanne, J. Evidence for the mechanosensor function of filamin in tissue development. Sci. Rep. 6, 32798 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Razinia, Z., Makela, T., Ylanne, J. & Calderwood, D. A. Filamins in mechanosensing and signaling. Annu Rev. Biophys. 41, 227–246 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Stossel, T. P. et al. Filamins as integrators of cell mechanics and signalling. Nat. Rev. Mol. Cell Biol. 2, 138–145 (2001).

CAS  PubMed  Article  Google Scholar 

Zhou, A. X., Hartwig, J. H. & Akyurek, L. M. Filamins in cell signaling, transcription and organ development. Trends Cell Biol. 20, 113–123 (2010).

CAS  PubMed  Article  Google Scholar 

Massague, J., Seoane, J. & Wotton, D. Smad transcription factors. Genes Dev. 19, 2783–2810 (2005).

CAS  PubMed  Article  Google Scholar 

Miyazono, K., Kusanagi, K. & Inoue, H. Divergence and convergence of TGF-beta/BMP signaling. J. Cell. Physiol. 187, 265–276 (2001).

CAS  PubMed  Article  Google Scholar 

Morikawa, M., Derynck, R. & Miyazono, K. TGF-beta and the TGF-beta family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol 8, a021873 (2016).

Shi, Y. & Massague, J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).

CAS  PubMed  Article  Google Scholar 

Wang, R. N. et al. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis. 1, 87–105 (2014).

PubMed  PubMed Central  Article  Google Scholar 

Guo, X. & Wang, X. F. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res 19, 71–88 (2009).

CAS  PubMed  Article  Google Scholar 

Lee, K. S., Hong, S. H. & Bae, S. C. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene 21, 7156–7163 (2002).

CAS  PubMed  Article  Google Scholar 

Lee, M. K. et al. TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 26, 3957–3967 (2007).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Miyazono, K., Kamiya, Y. & Morikawa, M. Bone morphogenetic protein receptors and signal transduction. J. Biochem 147, 35–51 (2010).

CAS  PubMed  Article  Google Scholar 

Zhang, Y. E. Non-Smad pathways in TGF-beta signaling. Cell Res 19, 128–139 (2009).

CAS  PubMed  Article  Google Scholar 

Dituri, F., Cossu, C., Mancarella, S. & Giannelli, G. The Interactivity between TGFbeta and BMP signaling in organogenesis, fibrosis, and cancer. Cells 8, 1130 (2019).

Yue, J., Frey, R. S. & Mulder, K. M. Cross-talk between the Smad1 and Ras/MEK signaling pathways for TGFbeta. Oncogene 18, 2033–2037 (1999).

CAS  PubMed  Article  Google Scholar 

Hata, A., Lagna, G., Massague, J. & Hemmati-Brivanlou, A. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev. 12, 186–197 (1998).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kamato, D. et al. Smad linker region phosphorylation is a signalling pathway in its own right and not only a modulator of canonical TGF-beta signalling. Cell. Mol. life Sci.: CMLS 77, 243–251 (2020).

CAS  PubMed  Article  Google Scholar 

Miyazawa, K. & Miyazono, K. Regulation of TGF-beta family signaling by inhibitory smads. Cold Spring Harb Perspect Biol 9, a022095 (2017).

Sapkota, G., Alarcon, C., Spagnoli, F. M., Brivanlou, A. H. & Massague, J. Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol. cell 25, 441–454 (2007).

CAS  PubMed  Article  Google Scholar 

Shen, R. et al. Smad6 interacts with Runx2 and mediates Smad ubiquitin regulatory factor 1-induced Runx2 degradation. J. Biol. Chem. 281, 3569–3576 (2006).

CAS  PubMed  Article  Google Scholar 

Hough, C., Radu, M. & Dore, J. J. Tgf-beta induced Erk phosphorylation of smad linker region regulates smad signaling. PloS one 7, e42513 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kamato, D. & Little, P. J. Smad2 linker region phosphorylation is an autonomous cell signalling pathway: Implications for multiple disease pathologies. Biomed. Pharmacother. 124, 109854 (2020).

CAS  PubMed  Article  Google Scholar 

Sasaki, A., Masuda, Y., Ohta, Y., Ikeda, K. & Watanabe, K. Filamin associates with Smads and regulates transforming growth factor-beta signaling. J. Biol. Chem. 276, 17871–17877 (2001).

CAS  PubMed  Article  Google Scholar 

Toomer, K. et al. Filamin-A as a balance between erk/smad activities during cardiac valve development. Anat. Rec. (Hoboken) 302, 117–124 (2019).

CAS  Article  Google Scholar 

Zheng, L., Baek, H. J., Karsenty, G. & Justice, M. J. Filamin B represses chondrocyte hypertrophy in a Runx2/Smad3-dependent manner. J. cell Biol. 178, 121–128 (2007).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jarraya, M. et al. A longitudinal study of disc height narrowing and facet joint osteoarthritis at the thoracic and lumbar spine, evaluated by computed tomography: the Framingham Study. Spine J. 18, 2065–2073 (2018).

PubMed  PubMed Central  Article  Google Scholar 

Colombier, P., Clouet, J., Hamel, O., Lescaudron, L. & Guicheux, J. The lumbar intervertebral disc: from embryonic development to degeneration. Jt., bone, Spine.: Rev. du Rhum. 81, 125–129 (2014).

Article  Google Scholar 

Kennon, J. C., Awad, M. E., Chutkan, N., DeVine, J. & Fulzele, S. Current insights on use of growth factors as therapy for Intervertebral Disc Degeneration. Biomol. Concepts 9, 43–52 (2018).

CAS  PubMed  Article  Google Scholar 

Smith, L. J., Nerurkar, N. L., Choi, K. S., Harfe, B. D. & Elliott, D. M. Degeneration and regeneration of the intervertebral disc: lessons from development. Dis. Model Mech. 4, 31–41 (2011).

PubMed  Article  CAS  Google Scholar 

Stickens, D. et al. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 131, 5883–5895 (2004).

CAS  PubMed  Article  Google Scholar 

Tolonen, J. et al. Growth factor expression in degenerated intervertebral disc tissue. An immunohistochemical analysis of transforming growth factor beta, fibroblast growth factor and platelet-derived growth factor. Eur. Spine J 15, 588–596 (2006).

PubMed  Article  Google Scholar 

Clouet, J. et al. Characterization of the age-dependent intervertebral disc changes in rabbit by correlation between MRI, histology and gene expression. BMC Musculoskelet. Disord. 12, 147 (2011).

PubMed  PubMed Central  Article  Google Scholar 

Haschtmann, D., Ferguson, S. J. & Stoyanov, J. V. BMP-2 and TGF-beta3 do not prevent spontaneous degeneration in rabbit disc explants but induce ossification of the annulus fibrosus. Eur. Spine J. 21, 1724–1733 (2012).

PubMed  PubMed Central  Article  Google Scholar 

Huang, B., Zhuang, Y., Li, C. Q., Liu, L. T. & Zhou, Y. Regeneration of the intervertebral disc with nucleus pulposus cell-seeded collagen II/hyaluronan/chondroitin-6-sulfate tri-copolymer constructs in a rabbit disc degeneration model. Spine 36, 2252–2259 (2011).

PubMed  Article  Google Scholar 

van de Laar, I. M. et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat. Genet 43, 121–126 (2011).

PubMed 

留言 (0)

沒有登入
gif