The HIF-1α/PLOD2 axis integrates extracellular matrix organization and cell metabolism leading to aberrant musculoskeletal repair

Hwang, C. D. et al. Contemporary perspectives on heterotopic ossification. JCI Insight 7, e158996 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Kaplan, F. S. & Shore, E. M. Progressive osseous heteroplasia. J. Bone Miner. Res. 15, 2084–2094 (2000).

Article  CAS  PubMed  Google Scholar 

Peterson, J. R. et al. Effects of aging on osteogenic response and heterotopic ossification following burn injury in mice. Stem Cells Dev. 24, 205–213 (2015).

Article  CAS  PubMed  Google Scholar 

Spreadborough, P. J., Strong, A. L., Mares, J., Levi, B. & Davis, T. A. Tourniquet use following blast-associated complex lower limb injury and traumatic amputation promotes end organ dysfunction and amplified heterotopic ossification formation. JOSR 17, 422 (2022).

Google Scholar 

Wiesener, M. S. et al. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J. 17, 271–273 (2003).

Article  CAS  PubMed  Google Scholar 

Pugh, C. W. & Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. 9, 677–684 (2003).

Article  CAS  PubMed  Google Scholar 

Amarilio, R. et al. HIF1alpha regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Development 134, 3917–3928 (2007).

Article  CAS  PubMed  Google Scholar 

Provot, S. et al. Hif-1alpha regulates differentiation of limb bud mesenchyme and joint development. J. Cell Biol. 177, 451–464 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agarwal, S. et al. Inhibition of Hif1alpha prevents both trauma-induced and genetic heterotopic ossification. Proc. Natl. Acad. Sci. USA 113, E338–E347 (2016).

Article  CAS  PubMed  Google Scholar 

Gilkes, D. M., Bajpai, S., Chaturvedi, P., Wirtz, D. & Semenza, G. L. Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J. Biol. Chem. 288, 10819–10829 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Myllyharju, J. & Kivirikko, K. I. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 20, 33–43 (2004).

Article  CAS  PubMed  Google Scholar 

van der Slot, A. J. et al. Identification of PLOD2 as telopeptide lysyl hydroxylase, an important enzyme in fibrosis. J. Biol. Chem. 278, 40967–40972 (2003).

Article  PubMed  Google Scholar 

Vallet, S. D. & Ricard-Blum, S. Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays Biochem. 63, 349–364 (2019).

Article  CAS  PubMed  Google Scholar 

van der Slot, A. J. et al. Elevated formation of pyridinoline cross-links by profibrotic cytokines is associated with enhanced lysyl hydroxylase 2b levels. Biochim. Biophys. Acta 1741, 95–102 (2005).

Article  PubMed  Google Scholar 

Wells, R. G. The role of matrix stiffness in regulating cell behavior. Hepatology 47, 1394–1400 (2008).

Article  CAS  PubMed  Google Scholar 

Huang, Y., Lin, D. & Taniguchi, C. M. Hypoxia inducible factor (HIF) in the tumor microenvironment: friend or foe? Sci. China Life Sci. 60, 1114–1124 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Missiaen, R., Lesner, N. P. & Simon, M. C. HIF: a master regulator of nutrient availability and metabolic cross-talk in the tumor microenvironment. EMBO J. 42, e112067 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huber, A. K. et al. Immobilization after injury alters extracellular matrix and stem cell fate. J. Clin. Investig. 130, 5444–5460 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pagani, C. A. et al. Discoidin domain receptor 2 regulates aberrant mesenchymal lineage cell fate and matrix organization. Sci. Adv. 8, eabq6152 (2022).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Peterson, J. R. et al. Direct mouse trauma/burn model of heterotopic ossification. J. Vis. Exp. 102, e52880 (2015).

Google Scholar 

Davis, A. P., Witte, D. P., Hsieh-Li, H. M., Potter, S. S. & Capecchi, M. R. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375, 791–795 (1995).

Article  ADS  CAS  PubMed  Google Scholar 

Pineault, K. M., Song, J. Y., Kozloff, K. M., Lucas, D. & Wellik, D. M. Hox11 expressing regional skeletal stem cells are progenitors for osteoblasts, chondrocytes and adipocytes throughout life. Nat. Commun. 10, 3168 (2019).

Article  ADS  PubMed  PubMed Central  Google Scholar 

Rux, D., Helbig, K., Koyama, E. & Pacifici, M. Hox11 expression characterizes developing zeugopod synovial joints and is coupled to postnatal articular cartilage morphogenesis into functional zones in mice. Dev. Biol. 477, 49–63 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pagani, C. A. et al. Novel lineage-tracing system to identify site-specific ectopic bone precursor cells. Stem Cell Rep. 16, 626–640 (2021).

Article  CAS  Google Scholar 

Huang, Y. & Kyriakides, T. R. The role of extracellular matrix in the pathophysiology of diabetic wounds. Matrix Biol. 6-7, 100037 (2020).

Article  Google Scholar 

Gilkes, D. M., Semenza, G. L. & Wirtz, D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat. Rev. Cancer 14, 430–439 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qi, Y. & Xu, R. Roles of PLODs in collagen synthesis and cancer progression. Front. Cell Dev. Biol. 6, 66 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Tong, Y. et al. The PLOD2/succinate axis regulates the epithelial-mesenchymal plasticity and cancer cell stemness. Proc. Natl. Acad. Sci. USA 120, e2214942120 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho, Y. et al. CTRP3 exacerbates tendinopathy by dysregulating tendon stem cell differentiation and altering extracellular matrix composition. Sci. Adv. 7, eabg6069 (2021).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Riley, G. Tendinopathy-from basic science to treatment. Nat. Clin. Pract. Rheumatol. 4, 82–89 (2008).

Article  PubMed  Google Scholar 

Gilkes, D. M. et al. Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol. Cancer Res. 11, 456–466 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Semenza, G. L. The hypoxic tumor microenvironment: a driving force for breast cancer progression. Biochim. Biophys. Acta 1863, 382–391 (2016).

Article  CAS  PubMed  Google Scholar 

Wang, H. et al. Cellular hypoxia promotes heterotopic ossification by amplifying BMP signaling. J. Bone Min. Res. 31, 1652–1665 (2016).

Article  CAS  Google Scholar 

Jaakkola, P. et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

Article  ADS  CAS  PubMed  Google Scholar 

Ivan, M. et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

Article  ADS  CAS  PubMed  Google Scholar 

van der Slot, A. J. et al. Increased formation of pyridinoline cross-links due to higher telopeptide lysyl hydroxylase levels is a general fibrotic phenomenon. Matrix Biol. 23, 251–257 (2004).

Article  PubMed  Google Scholar 

Ge, H., Tian, M., Pei, Q., Tan, F. & Pei, H. Extracellular matrix stiffness: new areas affecting cell metabolism. Front. Oncol. 11, 631991 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. & Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187–197 (2006).

留言 (0)

沒有登入
gif