Davy H (1811) The Bakerian lecture: on some of the combinations of oxymuriatic gas and oxygene, and on the chemical relations of these principles, to inflammable bodies. Phil Trans R Soc Lond. https://doi.org/10.1098/rstl.1811.0001
Faraday M (1823) XIV. On fluid chlorine. Note on the condensation of muriatic acid gas into the liquid form by H. Davy. Phil Trans R Soc Lond. https://doi.org/10.1098/rstl.1823.0016
Schroeder W (1927) In: Herz W (ed) Sammlung Chemischer und chemisch-technischer. Vorträge, Breslau
Hammerschmidt EG (1934) Formation of gas hydrates in natural gas transmission lines. Ind Eng Chem. https://doi.org/10.1021/ie50296a010
Makogon YF (1966) Features of natural gas fields exploitation in permafrost zone. Gazovaya Promyshlennost 5:14–15
Hester KC, Brewer PG (2009) Clathrate hydrates in nature. Annu Rev Mar Sci. https://doi.org/10.1146/annurev.marine.010908.163824
Kvenvolden KA, Lorenson TD (2001) In: Paull CK, Dillon WP (eds) Natural gas hydrates – occurrences, distribution and detection. American Geophysical Union, Washington.
Kashchiev D, Firoozabadi A (2002) Driving force for crystallization of gas hydrates. J Cryst Growth 241:220–230
Christiansen RL, Sloan ED (1994) In: Sloan ED, Happel J, Hnatow MA (eds) International Conference on Natural Gas Hydrates. Annals of the New York Academy of Science, New Paltz, New York
Ke W, Svartaas TM, Chen D (2019) A review of gas hydrate nucleation theories and growth models. J Nat Gas Sci Eng. https://doi.org/10.1016/j.jngse.2018.10.021
Klapp SA, Murshed MM, Pape T, Klein H, Bohrmann G, Brewer PG, Kuhs WF (2010) Mixed gas hydrate structures at the Chapopote Knoll, southern Gulf of Mexico. Earth Planet Sci Lett. https://doi.org/10.1016/j.epsl.2010.09.001
Walsh MR, Koh CA, Sloan ED, Sum AK, Wu DT (2009) Microsecond simulations of spontaneous methane hydrate nucleation and growth. Science. https://doi.org/10.1126/science.1174010
Article PubMed PubMed Central Google Scholar
Jacobson LC, Hujo W, Molinero V (2010) Nucleation pathways of clathrate hydrates: effect of guest size and solubility. J Phys Chem B. https://doi.org/10.1021/jp107269q
Jacobson LC, Matsumoto M, Molinero V (2011) Order parameters for the multistep crystallization of clathrate hydrates. J Chem Phys doi 10(1063/1):3613667
Radhakrishnan R, Trout BL (2002) A new approach for studying nucleation phenomena using molecular simulations: application to CO2 hydrate clathrates. J Chem Phys doi 10(1063/1):1485962
Moon C, Taylor PC, Roger PM (2003) Molecular dynamics study of gas hydrate formation. J Am Chem Soc. https://doi.org/10.1021/ja028537v
Long J (1994) Gas hydrate formation mechanism and its kinetic inhibition. PhD Thesis, Colorado School of Mines, Golden, USA
Kvamme B (1996) A new theory for the kinetics of hydrate formation. In: Proceedings of the 2nd International Conference on gas hydrates, Toulouse
von Stackelberg M, Müller HR (1954) Feste Gashydrate II. Struktur und Raumchemie. Z Elektrochem. https://doi.org/10.1002/bbpc.19540580105
Ripmeester JA, Tse JS, Ratcliffe CI, Powell BM (1987) A new clathrate hydrate structure. Nature. https://doi.org/10.1038/325135a0
Ismail NM (2021) Interfacial and kinetic studies of clathrate hydrates. PhD thesis, Colorado School of Mines, Golden, USA
Pan M (2022) Systematic studies on the thermodynamic properties of mixed gas hydrates and their formation/dissociation/transformation kinetics. PhD thesis, University of Potsdam, Potsdam, Germany
Sloan ED, Koh CA (2008) Clathrate hydrates of natural gases, 3rd edn. CRC, Taylor & Francis, Boca Raton
Lederhos JP, Christiansen RL, Sloan ED (1993) A first order method of hydrate equilibrium estimation and its use with new structures. Fluid Phase Equilib. https://doi.org/10.1016/0378-3812(93)87049-7
Schicks JM, Ripmeester JA (2004) The coexistence of two different methane hydrate phases under moderate pressure and temperature conditions: kinetic versus thermodynamic products. Angew Chem Int Ed. https://doi.org/10.1002/anie.200453898
Staykova DK, Kuhs WF, Slamatin AN, Hansen T (2003) Formation of porous gas hydrates from ice powders: diffraction experiments and multistage model. J Phys Chem B. https://doi.org/10.1021/jp027787v
Sloan ED, Fleyfel F (1991) A molecular mechanism for gas hydrate nucleation from ice. AIChE J. https://doi.org/10.1002/aic.690370902
Schicks JM, Luzi-Helbing M (2013) Cage occupancy and structural changes during hydrate formation from initial stages to resulting hydrate phase. SAA. https://doi.org/10.1016/j.saa.2013.06.065
Schicks JM, Luzi-Helbing M (2015) Kinetic and thermodynamic aspects of clathrate hydrate nucleation and growth. J Chem Eng Data. https://doi.org/10.1021/je5005593
Schicks JM, Naumann R, Erzinger J, Hester KC, Koh CA, Sloan ED (2006) Phase transitions in mixed gas hydrates: experimental observations versus calculated data. J Phys Chem B. https://doi.org/10.1021/jp0612580
Maekawa T (2001) Equilibrium conditions for gas hydrates of methane and ethane mixtures in pure water and sodium chloride solution. Geochem J 35:59–66
Subramanian S, Kini RA, Dec SF, Sloan ED (2000) Structural transition studies in methane + ethane hydrates using Raman and NMR. Ann NY Acad Sci. https://doi.org/10.1111/j.1749-6632.2000.tb06841.x
Schicks JM (2021) Gashydrate – Eine Einführung in Grundlagenforschung und Anwendung. Springer Spektrum, Berlin
Luzi M, Schicks JM, Naumann R, Erzinger J, Udachin K, Moudrakovski I, Ripmeester JA, Ludwig R (2008) Investigations on the influence of guest molecule characteristics and the presence of multicomponent gas mixtures on gas hydrate properties. In: Proceedings of the 6th International Conference on Gas Hydrates (Vancouver 2008)
von Stackelberg M, Jahns W (1954) Feste Gashydrate VI. Die Gitteraufweitungsarbeit. Z Elektrochem. https://doi.org/10.1002/bbpc.19540580305
Handa YP (1986) Compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of methane, methane, and propane, and enthalpy of dissociation of isobutane hydrate, as determined by a heat-flow calorimeter. J Chem Thermodyn. https://doi.org/10.1016/0021-9614(86)90149-7
Kwon T-H, Rees TJ, Rees EVL (2011) Thermal dissociation behavior and dissociation enthalpies of methane carbon dioxide mixed hydrates. J Phys Chem B. https://doi.org/10.1021/jp111490w
Rydzy MB, Schicks JM, Naumann R, Erzinger J (2007) Dissociation enthalpies of synthesized multicomponent gas hydrates with respect to the guest composition and cage occupancy. J Phys Chem B. https://doi.org/10.1021/jp0712755
Milkov AV (2005) Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings. Org Geochem. https://doi.org/10.1016/j.orggeochem.2005.01.010
Wallmann K, Schicks J (2018). In: Wilkes H (ed) Hydrocarbons, oils and lipids: diversity, origin, chemistry and fate, (Handbook of Hydrocarbon and Lipid Microbiology). Springer, Berlin
Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature. https://doi.org/10.1038/35036572
Kastner M, Kvenvolden KA, Lorenson TD (1998) Chemistry, isotopic composition, and origin of a methane-hydrogen sulfide hydrate at the Cascadia subduction zone. Earth Planet Sci Lett 156:173–183
Kalogerakis N, Jamaluddin AKM, Dholabhai PD, Bishnoi PR (1993) Effect of surfactants on hydrate formation kinetics. In: SPE International Symposium on Oilfield Chemistry (New Orleans 1993)
Rogers RE, Kothapalli C, Lee MS, Woolsey JR (2003) Catalysis of gas hydrates by biosurfactants in seawater-saturated sand/clay. Can J Chem Eng. https://doi.org/10.1002/cjce.5450810508
Suess E, Torres ME, Bohrmann G, Collier RW, Rickert D, Goldfinger C, Linke P, Heuser A, Sahling H, Heeschen K, Jung C, Nakamura K, Greinert J, Pfannkuche O, Trehu A, Klinkhammer G, Whiticar MJ, Eisenhauer A, Teichert B, Elvert M (2001). In: Paull CK, Dillon WP (eds) Natural gas hydrates—occurrences, distribution and detection. American Geophysical Union, Washington
Torres ME, Wallmann K, Tr’ehu AM, Bohrmann G, Borowski WS, Tomaru H (2004) Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon. Earth Planet Sci Lett. https://doi.org/10.1016/j.epsl.2004.07.029
Riestenberg D, West O, Lee S, McCallum S, Phelps TJ (2003) Sediment surface effects on methane hydrate formation and dissociation. Mar Geol. https://doi.org/10.1016/S0025-3227(03)00100-2
Spangenberg E, Priegnitz M, Heeschen K, Schicks J (2015) Are laboratory-formed hydrate-bearing systems analogous to those in nature? J Chem Eng Data. https://doi.org/10.1021/je5005609
Mekala P, Babu P, Sangwai JS, Linga P (2014) Formation and dissociation kinetics of methane hydrates in seawater and silica sand. Energy Fuels. https://doi.org/10.1021/ef402445k
Hu Y, Makogon TY, Karanjkar P, Lee K-H, Lee BR, Sum AK (2017) Gas hydrates phase equilibria and formation from high concentration NaCl brines up to 200 MPa. J Chem Eng Data. https://doi.org/10.1021/acs.jced.7b00292
Lu H, Seo Y, Lee J, Moudrakovski I, Ripmeester JA, Chapman NR, Coffin RB, Gardner G, Pohlman J (2007) Complex gas hydrate from the Cascadia margin. Nature. https://doi.org/10.1038/nature05463
Article PubMed PubMed Central Google Scholar
Wei J, Fang Y, Lu H, Lu H, Lu J, Liang J, Yang S (2018) Distribution and characteristics of natural gas hydrates in the Shenhu Sea. Mar Pet Geol. https://doi.org/10.1016/j.marpetgeo.2018.07.028
Jin Y, Kida M, Yoneda J, Konno Y, Tenma MN, Nagao J (2020) Natural gas hydrates recovered from the Umitaka Spur in the Joetsu Basin, Japan: coexistence of two structure‑I hydrates with distinctly different textures and gas compositions within a massive structure. ACS Earth Space Chem. https://doi.org/10.1021/acsearthspacechem.9b00249
Hachikubo A, Khlystov O, Manakov A, Kida M, Krylov A, Sakagami H, Minami H, Takahashi N, Shoji H, Kalmychkov G, Poort J (2009) Model of formation of double structure gas hydrates in Lake Baikal based on isotopic data. Geophys Res Let. https://doi.org/10.1029/2009GL039805
Manakov AY, Khlystov OM, Hachikubo A, Minami K, Yamashita S, Khabuev A, Ogienko AG, Ildyakov AV, Kalmychkov GV, Rodionova TV (2019) Structural studies of Lake Baikal natural gas hydrates. J Struct Chem. https://doi.org/10.1134/S0022476619090087
Schicks JM, Ziemann MA, Lu H, Ripmeester JA (2010) Raman spectroscopic investigations on natural samples from the Integrated Ocean Drilling Program (IODP) Expedition 311: indications for heterogeneous compositions in hydrate crystals. SAA. https://doi.org/10.1016/j.saa.2010.08.033
Uchida T, Takeya S, Kamata Y, Ohmura R, Narita H (2007) Spectroscopic measurements on binary, ternary, and quaternary mixed-gas molecules in clathrate structures. Ind Eng Chem Res. https://doi.org/10.1021/ie070153w
Pan M, Schicks JM (2021) Influence of gas supply changes on the formation process of complex mixed gas hydrates. Molecules. https://doi.org/10.3390/molecules26103039
Article PubMed PubMed Central Google Scholar
Sloan ED (2003) Fundamental principles and applications of natural gas hydrates. Nature. https://doi.org/10.1038/nature02135
Hassanpouryouzband A, Joonaki E, Farahani MV, Takeya S, Ruppel C, Yang J, English NJ, Schicks J, Edlmann K, Mehrabian H, Aman ZM, Tohidi B (2020) Gas hydrates in sustainable chemistry. Chem Soc Rev. https://doi.org/10.1039/c8cs00989a
留言 (0)