1.
Drechsler, C, Kollerits, B, Meinitzer, A, et al. Homoarginine and progression of chronic kidney disease: results from the mild to moderate kidney disease study. PLoS One. 2013;8(5):e63560. doi:10.1371/journal.pone.0063560
Google Scholar |
Crossref |
Medline2.
Go, AS, Chertow, GM, Fan, D, McCulloch, CE, Hsu, CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–1305. doi:10.1056/NEJMoa041031
Google Scholar |
Crossref |
Medline |
ISI3.
März, W, Meinitzer, A, Drechsler, C, et al. Homoarginine, cardiovascular risk, and mortality. Circulation. 2010;122(10):967–975. doi:10.1161/CIRCULATIONAHA.109.908988
Google Scholar |
Crossref |
Medline4.
Pilz, S, Meinitzer, A, Tomaschitz, A, et al. Low homoarginine concentration is a novel risk factor for heart disease. Heart. 2011;97(15):1222–1227. doi:10.1136/hrt.2010.220731
Google Scholar |
Crossref |
Medline5.
Ryan, WL, Johnson, RJ, Dimari, S. Homoarginine synthesis by rat kidney. Arch Biochem Biophys. 1969;131(2):521–526.
Google Scholar |
Crossref |
Medline6.
Choe, CU, Atzler, D, Wild, PS, et al. Homoarginine levels are regulated by L-arginine: glycine amidinotransferase and affect stroke outcome: results from human and murine studies. Circulation. 2013;128(13):1451–1461. doi:10.1161/CIRCULATIONAHA.112.000580
Google Scholar |
Crossref |
Medline7.
Kleber, ME, Seppala, I, Pilz, S, et al. Genome-wide association study identifies 3 genomic loci significantly associated with serum levels of homoarginine: the atheroremo consortium. Circ Cardiovasc Genet. 2013;6(5):505–513. doi:10.1161/CIRCGENETICS.113.000108
Google Scholar |
Crossref |
Medline8.
Chambers, JC, Zhang, W, Lord, GM, et al. Genetic loci influencing kidney function and chronic kidney disease. Nat Genet. 2010;42(5):373–375. doi:10.1038/ng.566
Google Scholar |
Crossref |
Medline |
ISI9.
Pilz, S, Meinitzer, A, Gaksch, M, et al. Homoarginine in the renal and cardiovascular systems. Amino Acids. 2015;47(9):1703–1713. doi:10.1007/s00726-015-1993-2
Google Scholar |
Crossref |
Medline10.
Al Banchaabouchi, M, Marescau, B, Van Marck, E, D’Hooge, R, De Deyn, PP. Long-term effect of partial nephrectomy on biological parameters, kidney histology, and guanidino compound levels in mice. Metabolism. 2001;50(12):1418–1425.
Google Scholar |
Crossref |
Medline11.
Ravani, P, Maas, R, Malberti, F, et al. Homoarginine and mortality in pre-dialysis chronic kidney disease (CKD) patients. PLoS One. 2013;8(9):e72694. doi:10.1371/journal.pone.0072694
Google Scholar |
Crossref |
Medline12.
Tomaschitz, A, Meinitzer, A, Pilz, S, et al. Homoarginine, kidney function and cardiovascular mortality risk. Nephrol Dial Transplant. 2014;29(3):663–671. doi:10.1093/ndt/gft512
Google Scholar |
Crossref |
Medline13.
Drechsler, C, Meinitzer, A, Pilz, S, et al. Homoarginine, heart failure, and sudden cardiac death in haemodialysis patients. Eur J Heart Fail. 2011;13(8):852–859. doi:10.1093/eurjhf/hfr056
Google Scholar |
Crossref |
Medline14.
Atzler, D, Schwedhelm, E, Choe, CU. L-homoarginine and cardiovascular disease. Curr Opin Clin Nutr Metab Care. 2015;18(1):83–88. doi:10.1097/MCO.0000000000000123
Google Scholar |
Crossref |
Medline15.
Rodionov, RN, Begmatov, H, Jarzebska, N, et al. Homoarginine supplementation prevents left ventricular dilatation and preserves systolic function in a model of coronary artery disease. J Am Heart Assoc. 2019;8(14):e012486. doi:10.1161/JAHA.119.012486
Google Scholar |
Crossref |
Medline16.
Atzler, D, McAndrew, DJ, Cordts, K, et al. Dietary supplementation with homoarginine preserves cardiac function in a murine model of post-myocardial infarction heart failure. Circulation. 2017;135(4):400–402. doi:10.1161/CIRCULATIONAHA.116.025673
Google Scholar |
Crossref |
Medline17.
Faller, KME, Atzler, D, McAndrew, DJ, et al. Impaired cardiac contractile function in AGAT knockout mice devoid of creatine is rescued by homoarginine but not creatine. Cardiovasc Res. 2018;114(3):417–430. doi:10.1093/cvr/cvx242
Google Scholar |
Crossref |
Medline18.
Baraka, A, El Ghotny, S. Cardioprotective effect of renalase in 5/6 nephrectomized rats. J Cardiovasc Pharmacol Ther. 2012;17(4):412–416. doi:10.1177/1074248412446977
Google Scholar |
SAGE Journals |
ISI19.
Ghosh, SS, Krieg, RJ, Sica, DA, Wang, R, Fakhry, I, Gehr, T. Cardiac hypertrophy in neonatal nephrectomized rats: the role of the sympathetic nervous system. Pediatr Nephrol. 2009;24(2):367–377. doi:10.1007/s00467-008-0978-8
Google Scholar |
Crossref |
Medline |
ISI20.
Kalk, P, Godes, M, Relle, K, et al. NO-independent activation of soluble guanylate cyclase prevents disease progression in rats with 5/6 nephrectomy. Br J Pharmacol. 2006;148(6):853–859. doi:10.1038/sj.bjp.0706792
Google Scholar |
Crossref |
Medline21.
Buss, SJ, Muenz, S, Riffel, JH, et al. Beneficial effects of mammalian target of rapamycin inhibition on left ventricular remodeling after myocardial infarction. J Am Coll Cardiol. 2009;54(25):2435–2446. doi:10.1016/j.jacc.2009.08.031
Google Scholar |
Crossref |
Medline |
ISI22.
Hardt, SE, Geng, YJ, Montagne, O, et al. Accelerated cardiomyopathy in mice with overexpression of cardiac G(s)alpha and a missense mutation in the alpha-myosin heavy chain. Circulation. 2002;105(5):614–620.
Google Scholar |
Crossref |
Medline23.
Liu, S, Kompa, AR, Kumfu, S, et al. Subtotal nephrectomy accelerates pathological cardiac remodeling post-myocardial infarction: implications for cardiorenal syndrome. Int J Cardiol. 2013;168(3):1866–1880. doi:10.1016/j.ijcard.2012.12.065
Google Scholar |
Crossref |
Medline24.
Wenstrup, RJ, Florer, JB, Brunskill, EW, Bell, SM, Chervoneva, I, Birk, DE. Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem. 2004;279(51):53331–53337. doi:10.1074/jbc.M409622200
Google Scholar |
Crossref |
Medline |
ISI25.
Livak, KJ, Schmittgen, TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.1262
Google Scholar |
Crossref |
Medline |
ISI26.
Mokotedi, L, Michel, FS, Mogane, C, et al. Associations of inflammatory markers with impaired left ventricular diastolic and systolic function in collagen-induced arthritis. PLoS One. 2020;15(3):e02306 57. doi:10.1371/journal.pone.0230657
Google Scholar |
Crossref27.
Rusu, M, Hilse, K, Schuh, A, et al. Biomechanical assessment of remote and postinfarction scar remodeling following myocardial infarction. Sci Rep. 2019;9(1):16744. doi:10.1038/s41598-019-53351-7
Google Scholar |
Crossref |
Medline28.
Gava, AL, Freitas, FP, Balarini, CM, Vasquez, EC, Meyrelles, SS. Effects of 5/6 nephrectomy on renal function and blood pressure in mice. Int J Physiol Pathophysiol Pharmacol. 2012;4(3):167–173.
Google Scholar |
Medline29.
Floege, J, Alpers, CE, Burns, MW, et al. Glomerular cells, extracellular matrix accumulation, and the development of glomerulosclerosis in the remnant kidney model. Lab Invest. 1992;66(4):485–497.
Google Scholar |
Medline30.
Facchin, L, Vescovo, G, Levedianos, G, et al. Left ventricular morphology and diastolic function in uraemia: echocardiographic evidence of a specific cardiomyopathy. Br Heart J. 1995;74(2):174–179.
Google Scholar |
Crossref |
Medline31.
Mall, G, Huther, W, Schneider, J, Lundin, P, Ritz, E. Diffuse intermyocardiocytic fibrosis in uraemic patients. Nephrol Dial Transplant. 1990;5(1):39–44.
Google Scholar |
Crossref |
Medline32.
Karetnikova, ES, Jarzebska, N, Markov, AG, Weiss, N, Lentz, SR, Rodionov, RN. Is homoarginine a protective cardiovascular risk factor? Arterioscler Thromb Vasc Biol. 2019;39(5):869–875. doi:10.1161/ATVBAHA.118.312218
Google Scholar |
Crossref |
Medline33.
Gao, L, Wang, LY, Liu, ZQ, et al. TNAP inhibition attenuates cardiac fibrosis induced by myocardial infarction through deactivating TGF-beta1/Smads and activating P53 signaling pathways. Cell Death Dis. 2020;11(1):44. doi:10.1038/s41419-020-2243-4
Google Scholar |
Crossref |
Medline34.
Ndrepepa, G, Xhepa, E, Braun, S, et al. Alkaline phosphatase and prognosis in patients with coronary artery disease. Eur J Clin Invest. 2017;47(5):378–387. doi:10.1111/eci.12752
Google Scholar |
Crossref |
Medline35.
Park, JB, Kang, DY, Yang, HM, et al. Serum alkaline phosphatase is a predictor of mortality, myocardial infarction, or stent thrombosis after implantation of coronary drug-eluting stent. Eur Heart J. 2013;34(12):920–931. doi:10.1093/eurheartj/ehs419
Google Scholar |
Crossref |
Medline36.
Gan, XT, Taniai, S, Zhao, G, et al. CD73-TNAP crosstalk regulates the hypertrophic response and cardiomyocyte calcification due to alpha1 adrenoceptor activation. Mol Cell Biochem. 2014;394(1-2):237–246. doi:10.1007/s11010-014-2100-9
Google Scholar |
Crossref |
Medline37.
Romanelli, F, Corbo, A, Salehi, M, et al. Overexpression of tissue-nonspecific alkaline phosphatase (TNAP) in endothelial cells accelerates coronary artery disease in a mouse model of familial hypercholesterolemia. PLoS One. 2017;12(10):e0186426. doi:10.1371/journal.pone.0186426
Google Scholar |
Crossref |
Medline38.
Savinov, AY, Salehi, M, Yadav, MC, Radichev, I, Millan, JL, Savinova, OV. Transgenic overexpression of tissue-nonspecific alkaline phosphatase (TNAP) in vascular endothelium results in generalized arterial calcification. J Am Heart Assoc. 2015;4(12):e002499. doi:10.1161/JAHA.115.002499
Google Scholar |
Crossref |
Medline39.
Sheen, CR, Kuss, P, Narisawa, S, et al. Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification. J Bone Miner Res. 2015;30(5):824–836. doi:10.1002/jbmr.2420
Google Scholar |
Crossref |
Medline40.
Dahl, R, Sergienko, EA, Su, Y, et al. Discovery and validation of a series of aryl sulfonamides as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). J Med Chem. 2009;52(21):6919–6925. doi:10.1021/jm900383 s
Google Scholar |
Crossref |
Medline41.
Hira, T, Ohyama, S, Hara, H. L-homoarginine suppresses exocrine pancreas in rats. Amino Acids. 2003;24(4):389–396. doi:10.1007/s00726-002-0344-2
Google Scholar |
Crossref |
Medline42.
Hou, Y, Hu, S, Jia, S, et al. Whole-body synthesis of L-homoarginine in pigs and rats supplemented with L-arginine. Amino Acids. 2016;48(4):993–1001. doi:10.1007/s00726-015-2145-4
Google Scholar |
Crossref |
Medline43.
Atzler, D, Rosenberg, M, Anderssohn, M, et al. Homoarginine—an independent marker of mortality in heart failure. Int J Cardiol. 2013;168(5):4907–4909. doi:10.1016/j.ijcard.2013.07.099
Google Scholar |
Crossref |
Medline44.
Pilz, S, Teerlink, T, Scheffer, PG, et al. Homoarginine and mortality in an older population: the Hoorn study. Eur J Clin Invest. 2014;44(2):200–208. doi:10.1111/eci.12208
Google Scholar |
Crossref |
Medline45.
Cullen, ME, Yuen, AH, Felkin, LE, et al. Myocardial expression of the arginine: glycine amidinotransferase gene is elevated in heart failure and normalized after recovery: potential implications for local creatine synthesis. Circulation. 2006;114(1 suppl):I16–I20. doi:10.1161/CIRCULATIONAHA.105.000448
Google Scholar |
Medline46.
Kayacelebi, AA, Nguyen, TH, Neil, C, Horowitz, JD, Jordan, J, Tsikas, D. Homoarginine and 3-nitrotyrosine in patients with takotsubo cardiomyopathy. Int J Cardiol. 2014;173(3):546–547. doi:10.1016/j.ijcard.2014.03.080
Google Scholar |
Crossref |
Medline47.
Lygate, CA, Bohl, S, ten Hove, M, et al. Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction. Cardiovasc Res. 2012;96(3):466–475. doi:10.1093/cvr/cvs272
Google Scholar |
Crossref |
Medline
留言 (0)