Histological Features of the Nasal Passage in Juvenile Japanese White Rabbits

1. Suh, SH, Chon, KM, Min, YG, Jeong, CH, Hong, SH. Effects of topical nasal decongestants on histology of nasal respiratory mucosa in rabbits. Acta Otolaryngol. 1995;115(5):664-671.
Google Scholar | Crossref | Medline2. AbdelKafy, WMA, Zittoon, RF, Abou-Halawa, AS, Makary, EFY, Ahmed, MR. Effect of formaldehyde inhalation on rabbit nasal mucosa: a light microscopic study—an animal model for inhalational irritants on nasal mucosa. Egypt J Otolaryngol. 2021;37:39.
Google Scholar | Crossref3. Gizurarson, S . Animal models for intranasal drug delivery studies. Acta Pharm Nord. 1990;2(2):105-122.
Google Scholar | Medline4. Lu, HT, Chen, RN, Sheu, MT, Chang, CC, Chou, PY, Ho, HO. Rapid-onset sildenafil nasal spray carried by microemulsion systems: in vitro evaluation and in vivo pharmacokinetic studies in rabbits. Xenobiotica. 2011;41(7):567-577.
Google Scholar | Crossref | Medline5. Weir, AB, Wilson, SD. Nonclinical regulatory aspects for ophthalmic drugs. In: Weir, AB, Collins, M, eds. Assessing Ocular Toxicology in Laboratory Animals. New York. NY: Humana Press; 2013:259-294.
Google Scholar | Crossref6. Attar, M, Brassard, JA, Kim, AS, Matsumoto, S, Ramos, M, Vangyi, C. Safety evaluation of ocular drugs. In: Faqi, AS , ed. A Comprehensive Guide to Toxicology in Preclinical Drug Development. London, England: Academic Press; 2013:567-617.
Google Scholar7. Kurata, M, Yamagiwa, Y, Haranosono, Y, Sakaki, H. Repeated-dose ocular instillation toxicity study: a survey of its study design on the basis of common technical documents in Japan. Fundam Toxicol Sci. 2017;4(2):959-959.
Google Scholar | Crossref8. Food and Drug Administration (FDA), United States Department of Health and Human Services, Center for Drug Evaluation and Research (CDER), and Center for Biologics Evaluation and Research (CBER) . Guidance for industry, E11 Clinical investigation of medicinal products in the pediatric population. Rockville, MD: Food and Drug Administration (FDA), Office of Training and Communications, Division of Communications Management, Drug Information Branch, International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) E11; 2000.
Google Scholar9. Food and Drug Administration (FDA), United States Department of Health and Human Services, Center for Drug Evaluation and Research (CDER) . Guidance for industry, Nonclinical safety evaluation of pediatric drug products. Rockville, MD: Food and Drug Administration, Office of Training and Communications, Division of Drug Information, Pharmacology and Toxicology; 2006.
Google Scholar10. European Medicines Agency (EMA), Committee for Human Medicinal Products (CHMP) . Guideline on the need for non-clinical testing in juvenile animals of pharmaceuticals for paediatric indications. London, England: European Medicines Agency (EMA), EMEA/CHMP/SWP/169215/2005; 2008.
Google Scholar11. Shimomura, K . The value of juvenile animal studies: a Japanese industry perspective. Birth Defects Res B Dev Reprod Toxicol. 2011;92(4):266-268.
Google Scholar | Medline12. Food and Drug Administration (FDA), United States Department of Health and Human Services, Center for Drug Evaluation and Research (CDER), and Center for Biologics Evaluation and Research (CBER) . Guidance for industry, S11 Nonclinical safety testing in support of development of pediatric pharmaceuticals. Silver Spring, MD: Food and Drug Administration (FDA), Office of Communications, Division of Drug Information Center for Drug Evaluation and Research, International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH); 2021.
Google Scholar13. Bailey, GP, Mariën, D. The value of juvenile animal studies “What have we learned from preclinical juvenile toxicity studies? II.” Birth Defects Res B Dev Reprod Toxicol. 2011;92(4):273-291.
Google Scholar | Crossref | Medline14. Barrow, PC, Barbellion, S, Stadler, J. Preclinical evaluation of juvenile toxicity. Methods Mol Biol. 2011;691:17-35.
Google Scholar | Crossref | Medline15. Tassinari, MS, Benson, K, Elayan, I, Espandiari, P, Davis-Bruno, K. Juvenile animal studies and pediatric drug development retrospective review: use in regulatory decisions and labeling. Birth Defects Res B Dev Reprod Toxicol. 2011;92(4):261-265.
Google Scholar | Medline16. Greeley, MA . Respiratory system. In: Parker, GA, Picut, CA, eds. Atlas of Histology of the Juvenile Rat. London, England: Academic Press; 2016:89-107.
Google Scholar17. Kuper, CF, Ernst, H, van Oostrum, LC, et al. Nasal passages of Göttingen minipigs from the neonatal period to young adult. Toxicol Pathol. 2012;40(4):656-666.
Google Scholar | SAGE Journals | ISI18. Pereira, ME, Macri, NP, Creasy, DM. Evaluation of the rabbit nasal cavity in inhalation studies and a comparison with other common laboratory species and man. Toxicol Pathol. 2011;39(5):893-900.
Google Scholar | SAGE Journals | ISI19. Del Pizzo, J, Callahan, JM. Intranasal medications in pediatric emergency medicine. Pediatr Emerg Care. 2014;30(7):496-501; quiz 502.
Google Scholar | Crossref | Medline20. Warrington, SE, Kuhn, RJ. Use of intranasal medications in pediatric patients. Orthopedics. 2011;34(6):456.
Google Scholar | Crossref | Medline21. Xi, J, Si, X, Zhou, Y, Kim, J, Berlinski, A. Growth of nasal and laryngeal airways in children: implications in breathing and inhaled aerosol dynamics. Respir Care. 2014;59(2):263-273.
Google Scholar | Crossref | Medline22. Van Loosen, J, Verwoerd-Verhoef, HL, Verwoerd, CD. The nasal septal cartilage in the newborn. Rhinology. 1988;26(3):161-165.
Google Scholar | Medline23. Van Loosen, J, Van Zanten, GA, Howard, CV, Verwoerd-Verhoef, HL, Van Velzen, D, Verwoerd, CD. Growth characteristics of the human nasal septum. Rhinology. 1996;34(2):78-82.
Google Scholar | Medline24. Zalzal, HG, O’Brien, DC, Zalzal, GH. Pediatric anatomy: nose and sinus. Oper Tech Otolayngol Head Neck Surg. 2018;29(2):44-50.
Google Scholar | Crossref25. Harkema, JR, Carey, SA, Wagner, JG. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol. 2006;34(3):252-269.
Google Scholar | SAGE Journals | ISI26. Harkema, JR . Comparative aspects of nasal airway anatomy: relevance to inhalation toxicology. Toxicol Pathol. 1991;19(4, pt 1):321-336.
Google Scholar | SAGE Journals27. Quinn, RH . Rabbit colony management and related health concerns. In: Suckow, MA, Stevens, KA, Wilson, RP, eds. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. London, England: Academic Press; 2012:217-241.
Google Scholar28. Morton, D . The use of rabbits in male reproductive toxicology. Environ Health Perspect. 1988;77:5-9.
Google Scholar | Crossref | Medline | ISI29. Christensen, ND, Peng, X. Rabbit genetics and transgenic models. In: Suckow, MA, Stevens, KA, Wilson, RP, eds. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. London, England: Academic Press; 2012:165-193.
Google Scholar | Crossref30. Igawa, T, Maitani, Y, Machida, Y, Nagai, T. Intranasal administration of human fibroblast interferon in mice, rats, rabbits and dogs. Chem Pharm Bull (Tokyo). 1990;38(2):549-551.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif