Implementation and Practice of Deep Learning-Based Instance Segmentation Algorithm for Quantification of Hepatic Fibrosis at Whole Slide Level in Sprague-Dawley Rats

1. Brody, H . Medical imaging. Nature. 2013;502(7473):S81. doi:10.1038/502s81a
Google Scholar | Crossref | Medline2. Mahmood, T, Owais, M, Noh, KJ, et al. Accurate Segmentation of Nuclear Regions with Multi-Organ Histopathology Images Using Artificial Intelligence for Cancer Diagnosis in Personalized Medicine. J Pers Med. 2021;11(6):515. doi:10.3390/jpm11060515
Google Scholar | Crossref | Medline3. Russakovsky, O, Deng, J, Su, H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015;115(3):211–252. doi:10.1007/s11263-015-0816-y
Google Scholar | Crossref | ISI4. LeCun, Y, Bengio, Y, Hinton, G. Deep learning. Nature. 2015;521(7553):436–444. doi:10.1038/nature14539
Google Scholar | Crossref | Medline | ISI5. Liu, X, Deng, Z, Yang, Y. Recent progress in semantic image segmentation. Artif Intell Rev. 2019;52:1089–1106. https://doi.org/10.1007/s10462-018-9641-3
Google Scholar | Crossref6. Wei, G-Q, Arbter, K, Hirzinger, G. Automatic tracking of laparoscopic instruments by color coding. Lect Notes Comput Sci. 1997;1204:357–366. doi:10.1007/bfb0029257
Google Scholar | Crossref7. Moon, N, Bullitt, E, van Leemput, K, Gerig, G..Automatic Brain and Tumor Segmentation. In: Dohi, T, Kikinis, R, eds. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2002. Lect Notes Comput Sci. Springer. 2002;2488:372–379. doi:10.1007/3-540-45786-0_46
Google Scholar | Crossref8. Cohen, A, Rivlin, E, Shimshoni, I, Sabo, E. Memory based active contour algorithm using pixel-level classified images for colon crypt segmentation. Comput Med Imaging Graph. 2015;43:150–164. doi:10.1016/j.compmedimag.2014.12.006
Google Scholar | Crossref | Medline9. Long, J, Shelhamer, E, Darrell, T. Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015:3431–3440. doi:10.1109/cvpr.2015.7298965
Google Scholar10. Noh, H, Hong, S, Han, B. Learning Deconvolution Network for Semantic Segmentation. 2015 IEEE International Conference on Computer Vision (ICCV). 2015:1520–1528. doi:10.1109/iccv.2015.178
Google Scholar | Crossref11. Dodballapur, V, Song, Y, Huang, H, Chen, M, Chrzanowski, W, Cai, W. Mask-driven mitosis detection in histopathology images. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). 2019:1855–1859. doi:10.1109/isbi.2019.8759164
Google Scholar12. Ronneberger, O, Fischer, P, Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Lect Notes Comput Sci. 2015;9351:234–241. doi:10.1007/978-3-319-24574-4_28
Google Scholar | Crossref13. He, K, Gkioxari, G, Dollár, P, Girshick, R. Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV); October 22-29, 2017; Venice, Italy:2980–2988, doi:10.1109/ICCV.2017.322
Google Scholar | Crossref14. Liu, M, Dong, J, Dong, X, Yu, H, Qi, L. Segmentation of Lung Nodule in CT Images Based on Mask R-CNN. 2018 9th International Conference on Awareness Science and Technology (iCAST). 2018:1–6. doi:10.1109/icawst.2018.8517248
Google Scholar | Crossref15. Altini, N, Cascarano, GD, Brunetti, A, et al. A deep learning instance segmentation approach for global glomerulosclerosis assessment in donor kidney biopsies. Electronics. 2020;9(11):1768. doi:10.3390/electronics9111768
Google Scholar | Crossref16. Chiao, J-Y, Chen, K-Y, Liao, KY-K, Hsieh, P-H, Zhang, G, Huang, T-C. Detection and classification the breast tumors using mask R-CNN on sonograms. Medicine. 2019;98(19):e15200. doi:10.1097/md.0000000000015200
Google Scholar | Crossref17. Naylor, P, Lae, M, Reyal, F, Walter, T. Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans Med Imaging. 2019;38(2):448–459. doi:10.1109/tmi.2018.2865709
Google Scholar | Crossref | Medline18. Heinemann, F, Birk, G, Stierstorfer, B. Deep learning enables pathologist-like scoring of NASH models. Sci Rep. 2019;9(1):1–10. doi:10.1038/s41598-019-54904-6
Google Scholar | Crossref | Medline19. Ramot, Y, Deshpande, A, Morello, V, Michieli, P, Shlomov, T, Nyska, A. Microscope-Based automated quantification of liver fibrosis in mice using a deep learning Algorithm. Toxicol Pathol. 2021;49(5):1126–1133. doi:10.1177/01926233211003866
Google Scholar | SAGE Journals | ISI20. George, J, Tsuchishima, M, Tsutsumi, M. Metabolism of N-nitrosodimethylamine, methylation ofmacromolecules, and development of hepatic fibrosis in rodent models. J Mol Med. 2020;98(9):1203–1213. doi:10.1007/s00109-020-01950-7
Google Scholar | Crossref | Medline21. George, J, Tsuchishima, M, Tsutsumi, M. Molecular mechanisms in the pathogenesis of N-nitrosodimethylamine induced hepatic fibrosis. Cell Death Disease. 2019;10(1):1–9. doi:10.1038/s41419-018-1272-8
Google Scholar | Crossref22. Ronneberger, O, Fischer, P, Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N, Hornegger, J, Wells, W, Frangi, A, eds. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lect Notes Comput Sci. Springer. 2015:9351. doi:10.1007/978-3-319-24574-4_28.
Google Scholar | Crossref23. He, K, Gkioxari, G, Dollar, P, Girshick, R. Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV). 2017:2980–2988. doi:10.1109/ICCV.2017.322.
Google Scholar | Crossref24. Durkee, MS, Abraham, R, Ai, J, Fuhrman, JD, Clark, MR, Giger, ML. Comparing Mask R-CNN and U-Net architectures for robust automatic segmentation of immune cells in immunofluorescence images of Lupus Nephritis biopsies. Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XIX. SPIE 11647. 2021;11647:116470X. doi:10.1117/12.2577785
Google Scholar25. Alfaro, E, Fonseca, XB, Albornoz, EM, Martínez, CE, Ramrez, SC. A Brief Analysis of U-Net and Mask R-CNN for Skin Lesion Segmentation. 2019 IEEE International Work Conference on Bioinspired Intelligence (IWOBI). 2019:000123–000126. doi:10.1109/IWOBI47054.2019.9114436
Google Scholar | Crossref26. Bini, SA . Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care? J Arthroplasty. 2018;33(8):2358–2361. doi:10.1016/j.arth.2018.02.067
Google Scholar | Crossref | Medline27. Bertram, CA, Aubreville, M, Marzahl, C, Maier, A, Klopfleisch, R. A large-scale dataset for mitotic figure assessment on whole slide images of canine cutaneous mast cell tumor. Sci Data. 2019;6(1):274. doi:10.1038/s41597-019-0290-4
Google Scholar | Crossref | Medline28. Bertram, CA, Aubreville, M, Gurtner, C, et al. Computerized calculation of mitotic count distribution in canine cutaneous mast cell tumor sections: mitotic count is area dependent. Vet Pathol. 2020;57(2):214–226. doi:10.1177/0300985819890686
Google Scholar | SAGE Journals | ISI29. Abadi, M, Agarwal, A, Barham, P, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv. 2016. 1603.04467.
Google Scholar30. Matterport/Mask_RCNN . GitHub. https://github.com/matterport/Mask_RCNN. Published 2019. Accessed February 10, 2021.
Google Scholar31. Jaderberg, M, Simonyan, K, Zisserman, A, Kavukcuoglu, K. Spatial transformer networks. In: NIPS , ed. Advances in Neural Information Processing Systems. Curran Associates, Inc; 2015;28. https://proceedings.neurips.cc/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf.
Google Scholar32. Ishak, K, Baptista, A, Bianchi, L, et al. Histological grading and staging of chronic hepatitis. J Hepatol. 1995;22(6):696–699. doi:10.1016/0168-8278(95)80226-6
Google Scholar | Crossref | Medline | ISI33. Carboni, E, Marxfeld, H, Tuoken, H, et al. A workflow for the performance of the differential ovarian follicle count using deep neuronal networks. Toxicol Pathol. 2021;49(4):843–850. doi:10.1177/0192623320969130
Google Scholar | SAGE Journals | ISI34. Ramot, Y, Zandani, G, Madar, Z, Deshmukh, S, Nyska, A. Utilization of a deep learning Algorithm for microscope-based fatty vacuole quantification in a fatty liver model in mice. Toxicol Pathol. 2020;48(5):702–707. doi:10.1177/0192623320926478
Google Scholar | SAGE Journals | ISI

留言 (0)

沒有登入
gif