1. Froeling, FE, Seckl, MJ. Gestational trophoblastic tumours: an update for 2014. Curr Oncol Rep. 2014;16(11):408.
Google Scholar |
Crossref2. Seckl, MJ, Sebire, NJ, Berkowitz, RS. Gestational trophoblastic disease. Lancet (London, England). 2010;376(9742):717–729.
Google Scholar |
Crossref3. Wairachpanich, V, Limpongsanurak, S, Lertkhachonsuk, R. Epidemiology of hydatidiform moles in a tertiary hospital in Thailand over Two decades: impact of the national health policy. Asian Pacific Journal of Cancer Prevention : APJCP. 2015;16(18):8321–8325.
Google Scholar4. Wang, Q, Fu, J, Hu, L, et al. Prophylactic chemotherapy for hydatidiform mole to prevent gestational trophoblastic neoplasia. Cochrane Database Syst Rev. 2017;9(9):Cd007289.
Google Scholar5. Zhao, P, Wang, S, Zhang, X, Lu, W. A novel prediction model for postmolar gestational trophoblastic neoplasia and comparison With existing models. International Journal Of Gynecological Cancer : Official Journal Of The International Gynecological Cancer Society. 2017;27(5):1028–1034.
Google Scholar |
Crossref6. Brouillet, S, Hoffmann, P, Chauvet, S, et al. Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors. Cell Mol Life Sci. 2012;69(9):1537–1550.
Google Scholar |
Crossref7. Traboulsi, W, Sergent, F, Boufettal, H, et al. Antagonism of EG-VEGF receptors as targeted therapy for choriocarcinoma progression In vitro and In vivo. Clin Cancer Res. 2017;23(22):7130–7140.
Google Scholar |
Crossref8. Bartels, CL, Tsongalis, GJ. MicroRNAs: novel biomarkers for human cancer. Clin Chem. 2009;55(4):623–631.
Google Scholar |
Crossref9. Hosseinahli, N, Aghapour, M, Duijf, PHG, Baradaran, B. Treating cancer with microRNA replacement therapy: a literature review. J Cell Physiol. 2018;233(8):5574–5588.
Google Scholar |
Crossref |
Medline10. Drahos, J, Schwameis, K, Orzolek, LD, et al. MicroRNA profiles of barrett’s esophagus and esophageal adenocarcinoma: differences in glandular Non-native epithelium. Cancer Epidemiol Biomarkers Prev. 2016;25(3):429–437.
Google Scholar |
Crossref11. Drusco, A, Nuovo, GJ, Zanesi, N, et al. MicroRNA profiles discriminate among colon cancer metastasis. PloS One. 2014;9(6):e96670.
Google Scholar |
Crossref12. Liu, N, Chen, NY, Cui, RX, et al. Prognostic value of a microRNA signature in nasopharyngeal carcinoma: a microRNA expression analysis. Lancet Oncol. 2012;13(6):633–641.
Google Scholar |
Crossref13. Ma, MZ, Kong, X, Weng, MZ, et al. Candidate microRNA biomarkers of pancreatic ductal adenocarcinoma: meta-analysis, experimental validation and clinical significance. J Exp Clin Cancer Res. 2013;32(1):71.
Google Scholar |
Crossref14. Slattery, ML, Herrick, JS, Pellatt, DF, et al. MicroRNA profiles in colorectal carcinomas, adenomas and normal colonic mucosa: variations in miRNA expression and disease progression. Carcinogenesis. 2016;37(3):245–261.
Google Scholar |
Crossref15. Na, Q, Wang, D, Song, W. Underexpression of 4 placenta-associated microRNAs in complete hydatidiform moles. International Journal Of Gynecological Cancer : Official Journal Of The International Gynecological Cancer Society. 2012;22(6):1075–1080.
Google Scholar |
Crossref |
Medline16. Hasegawa, Y, Miura, K, Furuya, K, Yoshiura, K, Masuzaki, H. Identification of complete hydatidiform mole pregnancy-associated microRNAs in plasma. Clin Chem. 2013;59(9):1410–1412.
Google Scholar |
Crossref17. Miura, K, Hasegawa, Y, Abe, S, et al. Clinical applications of analysis of plasma circulating complete hydatidiform mole pregnancy-associated miRNAs in gestational trophoblastic neoplasia: a preliminary investigation. Placenta. 2014;35(9):787–789.
Google Scholar |
Crossref18. Chao, A, Tsai, CL, Wei, PC, et al. Decreased expression of microRNA-199b increases protein levels of SET (protein phosphatase 2A inhibitor) in human choriocarcinoma. Cancer Lett. 2010;291(1):99–107.
Google Scholar |
Crossref19. Lin, LH, Maestá, I, St Laurent, JD, et al. Distinct microRNA profiles for complete hydatidiform moles at risk of malignant progression. Am J Obstet Gynecol. 2021;224(4):372.e1–37.e30.
Google Scholar20. Liang, Z, Wang, X, Xu, X, et al. MicroRNA-608 inhibits proliferation of bladder cancer via AKT/FOXO3a signaling pathway. Mol Cancer. 2017;16(1):96.
Google Scholar |
Crossref |
Medline21. Wang, K, Liang, Q, Wei, L, Zhang, W, Zhu, P. MicroRNA-608 acts as a prognostic marker and inhibits the cell proliferation in hepatocellular carcinoma by macrophage migration inhibitory factor. Tumour Biology : The Journal Of The International Society for Oncodevelopmental Biology and Medicine. 2016;37(3):3823–3830.
Google Scholar |
Crossref22. Wang, Z, Xue, Y, Wang, P, Zhu, J, Ma, J. MiR-608 inhibits the migration and invasion of glioma stem cells by targeting macrophage migration inhibitory factor. Oncol Rep. 2016;35(5):2733–2742.
Google Scholar |
Crossref23. Zhang, Y, Schiff, D, Park, D, Abounader, R. MicroRNA-608 and microRNA-34a regulate chordoma malignancy by targeting EGFR, Bcl-xL and MET. PloS One. 2014;9(3):e91546.
Google Scholar |
Crossref |
Medline24. Xiao, B, Zhou, X, Ye, M, et al. MicroRNA566 modulates vascular endothelial growth factor by targeting Von HippelLandau in human glioblastoma in vitro and in vivo. Mol Med Rep. 2016;13(1):379–385.
Google Scholar |
Crossref |
Medline25. Butkyte, S, Ciupas, L, Jakubauskiene, E, et al. Splicing-dependent expression of microRNAs of mirtron origin in human digestive and excretory system cancer cells. Clin Epigenetics. 2016;8:33.
Google Scholar |
Crossref |
Medline26. Jin, C, Rajabi, H, Kufe, D. miR-1226 targets expression of the mucin 1 oncoprotein and induces cell death. Int J Oncol. 2010;37(1):61–39.
Google Scholar27. Jin, L, Li, Y, Zhang, Z, et al. miR-514a-3p functions as a tumor suppressor in renal cell carcinoma. Oncol Lett. 2017;14(5):5624–5630.
Google Scholar |
Medline28. Ke, X, Zeng, X, Wei, X, et al. MiR-514a-3p inhibits cell proliferation and epithelial-mesenchymal transition by targeting EGFR in clear cell renal cell carcinoma. Am J Transl Res. 2017;9(12):5332–5346.
Google Scholar29. Stark, MS, Bonazzi, VF, Boyle, GM, et al. miR-514a regulates the tumour suppressor NF1 and modulates BRAFi sensitivity in melanoma. Oncotarget. 2015;6(19):17753–17763.
Google Scholar |
Crossref |
Medline30. Ke, H, Zhao, L, Feng, X, et al. NEAT1 Is required for survival of breast cancer cells through FUS and miR-548. Gene Regul Syst Bio. 2016;10(Suppl1):11–17.
Google Scholar |
Medline31. Zhao, JR, Cheng, WW, Wang, YX, Cai, M, Wu, WB, Zhang, HJ. Identification of microRNA signature in the progression of gestational trophoblastic disease. Cell Death Dis. 2018;9(2):94.
Google Scholar |
Crossref32. Chen, X, Deane, NG, Lewis, KB, et al. Comparison of nanostring nCounter(R) data on FFPE colon cancer samples and affymetrix microarray data on matched frozen tissues. PloS One. 2016;11(5):e0153784.
Google Scholar33. Tam, S, de Borja, R, Tsao, MS, McPherson, JD. Robust global microRNA expression profiling using next-generation sequencing technologies. Lab Invest. 2014;94(3):350–358.
Google Scholar |
Crossref34. Vishnoi, A, Rani, S. MiRNA biogenesis and regulation of diseases: an overview. In: Rani, S , (ed.). MicroRNA Profiling: Methods and Protocols. New York, NY: Springer New York, 2017, 1–10.
Google Scholar |
Crossref
留言 (0)