CCL28 Downregulation Attenuates Pancreatic Cancer Progression Through Tumor Cell-Intrinsic and -Extrinsic Mechanisms

1. Siegel, RL, Miller, KD, Jemal, A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7-30. doi:10.3322/caac.21590
Google Scholar | Crossref | Medline2. Feldmann, G, Beaty, R, Hruban, RH, Maitra, A. Molecular genetics of pancreatic intraepithelial neoplasia. J Hepatobiliary Pancreat Surg. 2007;14(3):224-232. doi:10.1007/s00534-006-1166-5
Google Scholar | Crossref | Medline3. Millikan, KW, Deziel, DJ, Silverstein, JC, et al. Prognostic factors associated with resectable adenocarcinoma of the head of the pancreas. Am Surg. 1999;65(7):618-623. discussion 623–4.
Google Scholar | Medline4. Mizrahi, JD, Surana, R, Valle, JW, Shroff, RT. Pancreatic cancer. The Lancet. 2020;395(10242):2008-2020. doi:10.1016/s0140-6736(20)30974-0
Google Scholar | Crossref | Medline5. Oettle, H, Post, S, Neuhaus, P, et al. Adjuvant chemotherapy with gemcitabine versus observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA. 2007;297(3):267-277. doi:10.1001/jama.297.3.267
Google Scholar | Crossref | Medline6. Neoptolemos, JP, Dunn, JA, Stocken, DD, et al. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. Lancet. 2001;358(9293):1576-1585. doi:10.1016/s0140-6736(01)06651-x
Google Scholar | Crossref | Medline7. Neoptolemos, JP, Stocken, DD, Bassi, C, et al. Adjuvant chemotherapy with fluorouracil plus folinic acid versus gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA. 2010;304(10):1073-1081. doi:10.1001/jama.2010.1275
Google Scholar | Crossref | Medline8. Conroy, T, Hammel, P, Hebbar, M, et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med. 2018;379(25):2395-2406. doi:10.1056/NEJMoa1809775
Google Scholar | Crossref | Medline9. Royal, RE, Levy, C, Turner, K, et al. Phase 2 trial of single agent ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother. 2010;33(8):828-833. doi:10.1097/CJI.0b013e3181eec14c
Google Scholar | Crossref | Medline | ISI10. Brahmer, JR, Tykodi, SS, Chow, LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455-2465. doi:10.1056/NEJMoa1200694
Google Scholar | Crossref | Medline | ISI11. Winograd, R, Byrne, KT, Evans, RA, et al. Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol Res. 2015;3(4):399-411. doi:10.1158/2326-6066.CIR-14-0215
Google Scholar | Crossref | Medline12. Yarchoan, M, Hopkins, A, Jaffee, EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 2017;377(25):2500-2501. doi:10.1056/NEJMc1713444
Google Scholar | Crossref | Medline13. Hosein, AN, Brekken, RA, Maitra, A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat Rev Gastroenterol Hepatol. 2020;17(8):487-505. doi:10.1038/s41575-020-0300-1
Google Scholar | Crossref | Medline14. Garin-Chesa, P, Old, LJ, Rettig, WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci USA. 1990;87(18):7235-7239. doi:10.1073/pnas.87.18.7235
Google Scholar | Crossref | Medline15. Whatcott, CJ, Diep, CH, Jiang, P, et al. Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer. Clin Cancer Res. 2015;21(15):3561-3568. doi:10.1158/1078-0432.CCR-14-1051
Google Scholar | Crossref | Medline16. Apte, MV, Haber, PS, Applegate, TL, et al. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut. 1998;43(1):128-133. doi:10.1136/gut.43.1.128
Google Scholar | Crossref | Medline | ISI17. Ohlund, D, Handly-Santana, A, Biffi, G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 2017;214(3):579-596. doi:10.1084/jem.20162024
Google Scholar | Crossref | Medline18. Omary, MB, Lugea, A, Lowe, AW, Pandol, SJ. The pancreatic stellate cell: a star on the rise in pancreatic diseases. J Clin Invest. 2007;117(1):50-59. doi:10.1172/JCI30082
Google Scholar | Crossref | Medline19. Mace, TA, Ameen, Z, Collins, A, et al. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Research. 2013;73(10):3007-3018. doi:10.1158/0008-5472.CAN-12-4601
Google Scholar | Crossref | Medline20. Tang, D, Yuan, Z, Xue, X, et al. High expression of galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer. Int J Cancer. 2012;130(10):2337-2348. doi:10.1002/ijc.26290
Google Scholar | Crossref | Medline21. Wu, Q, Tian, Y, Zhang, J, et al. Functions of pancreatic stellate cell-derived soluble factors in the microenvironment of pancreatic ductal carcinoma. Oncotarget. 2017;8(60):102721-102738. doi:10.18632/oncotarget.21970
Google Scholar | Crossref | Medline22. Tang, D, Gao, J, Wang, S, et al. Apoptosis and anergy of T cell induced by pancreatic stellate cells-derived galectin-1 in pancreatic cancer. Tumour Biol. 2015;36(7):5617-5626. doi:10.1007/s13277-015-3233-5
Google Scholar | Crossref | Medline23. Roy, I, Boyle, KA, Vonderhaar, EP, et al. Cancer cell chemokines direct chemotaxis of activated stellate cells in pancreatic ductal adenocarcinoma. Lab Invest. 2017;97(3):302-317. doi:10.1038/labinvest.2016.146
Google Scholar | Crossref | Medline24. Facciabene, A, Peng, X, Hagemann, IS, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature. 2011;475(7355):226-230. doi:10.1038/nature10169
Google Scholar | Crossref | Medline | ISI25. Ren, L, Yu, Y, Wang, L, Zhu, Z, Lu, R, Yao, Z. Hypoxia-induced CCL28 promotes recruitment of regulatory T cells and tumor growth in liver cancer. Oncotarget. 2016;7(46):75763-75773. doi:10.18632/oncotarget.12409
Google Scholar | Crossref | Medline26. Huang, G, Tao, L, Shen, S, Chen, L. Hypoxia induced CCL28 promotes angiogenesis in lung adenocarcinoma by targeting CCR3 on endothelial cells. Sci Rep. 2016;6:27152. doi:10.1038/srep27152
Google Scholar | Crossref | Medline27. Vaupel, P, Hockel, M, Mayer, A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal. 2007;9(8):1221-1235. doi:10.1089/ars.2007.1628
Google Scholar | Crossref | Medline28. Yang, XL, Liu, KY, Lin, FJ, Shi, HM, Ou, ZL. CCL28 promotes breast cancer growth and metastasis through MAPK-mediated cellular anti-apoptosis and pro-metastasis. Oncol Rep. 2017;38(3):1393-1401. doi:10.3892/or.2017.5798
Google Scholar | Crossref | Medline29. Karnezis, T, Farnsworth, RH, Harris, NC, et al. CCL27/CCL28-CCR10 Chemokine signaling mediates migration of lymphatic endothelial cells. Cancer Res. 2019;79(7):1558-1572. doi:10.1158/0008-5472.CAN-18-1858
Google Scholar | Crossref | Medline30. Wang, C, Yan, J, Yin, P, et al. β-Catenin inhibition shapes tumor immunity and synergizes with immunotherapy in colorectal cancer. OncoImmunology. 2020;9(1). doi:10.1080/2162402x.2020.1809947
Google Scholar | Crossref31. Percie du Sert, N, Hurst, V, Ahluwalia, A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. BMJ Open Sci. 2020;4(1):e100115. doi:10.1136/bmjos-2020-100115
Google Scholar | Crossref | Medline32. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals . Guide for the Care and Use of Laboratory Animals. 8th ed. National Academies Press (US). 2011. doi:10.17226/12910.
Google Scholar33. Tang, Z, Li, C, Kang, B, Gao, G, Li, C, Zhang, Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98-W102. doi:10.1093/nar/gkx247
Google Scholar | Crossref | Medline34. Goswami, CP, Nakshatri, H. PROGgenev2: enhancements on the existing database. BMC Cancer. 2014;14:970. doi:10.1186/1471-2407-14-970
Google Scholar | Crossref | Medline35. Ji, L, Qian, W, Gui, L, et al. Blockade of beta-catenin-induced CCL28 suppresses gastric cancer progression via inhibition of Treg cell infiltration. Cancer Res. 2020;80(10):2004-2016. doi:10.1158/0008-5472.CAN-19-3074
Google Scholar | Crossref | Medline36. Siret, C, Collignon, A, Silvy, F, et al. Deciphering the crosstalk between myeloid-derived suppressor cells and regulatory T cells in pancreatic ductal adenocarcinoma. Front Immunol. 2019;10(3070). doi:10.3389/fimmu.2019.03070
Google Scholar | Medline37. Pothula, SP, Xu, Z, Goldstein, D, Pirola, RC, Wilson, JS, Apte, MV. Key role of pancreatic stellate cells in pancreatic cancer. Cancer Lett. 2016;381(1):194-200. doi:10.1016/j.canlet.2015.10.035
Google Scholar | Crossref | Medline38. Bachem, MG, Schneider, E, Gross, H, et al. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology. 1998;115(2):421-432. doi:10.1016/s0016-5085(98)70209-4
Google Scholar | Crossref | Medline | ISI39. Ren, B, Cui, M, Yang, G, et al. Tumor microenvironment participates in metastasis of pancreatic cancer. Mol Cancer. 2018;17(1):108. doi:10.1186/s12943-018-0858-1
Google Scholar | Crossref | Medline40. Karakhanova, S, Link, J, Heinrich, M, et al. Characterization of myeloid leukocytes and soluble mediators in pancreatic cancer: importance of myeloid-derived suppressor cells. Oncoimmunology. 2015;4(4):e998519. doi:10.1080/2162402X.2014.998519
Google Scholar | Crossref | Medline41. Domvri, K, Petanidis, S, Zarogoulidis, P, et al. Treg-dependent immunosuppression triggers effector T cell dysfunction via the STING/ILC2 axis. Clin Immunol. 2021;222:108620. doi:10.1016/j.clim.2020.108620
Google Scholar | Crossref | Medline42. Li, F, Zhao, Y, Wei, L, Li, S, Liu, J. Tumor-infiltrating Treg, MDSC, and IDO expression associated with outcomes of neoadjuvant chemotherapy of breast cancer. Cancer Biol Ther. 2018;19(8):695-705. doi:10.1080/15384047.2018.1450116
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif