Qin CH, Zhang HA, Chee YH, Pitarini A, Adem AA. Comparison of the use of antibiotic-loaded calcium sulphate and wound irrigation-suction in the treatment of lower limb chronic osteomyelitis. Injury. 2019;50(2):508–14. https://doi.org/10.1016/j.injury.2018.10.036.
2.Ferrando A, Part J, Baeza J. Treatment of cavitary bone defects in chronic osteomyelitis: biogactive glass S53P4 vs Calcium Sulphate Antibiotic Beads. J Bone Jt Infect. 2017;2(4):194–201. https://doi.org/10.7150/jbji.20404.
Article PubMed PubMed Central Google Scholar
3.David N, Nallaiyan R. Biologically anchored chitosan/gelatin-SrHAP scaffold fabricated on titanium against chronic osteomyelitis infection. Int J Biol Macromol. 2018;110:206–14. https://doi.org/10.1016/j.ijbiomac.2017.11.174.
CAS Article PubMed Google Scholar
4.Giannoudis PV. Treatment of bone defects: Bone transport or the induced membrane technique? Injury. 2016;47(2):291–2. https://doi.org/10.1016/j.injury.2016.01.023.
5.Ilizarov GA. Basic principles of transosseous compression and distraction osteosynthesis. Ortop Travmatol Protez. 1971;32(11):7–15.
6.Sailhan F. Bone lengthening (distraction osteogenesis): a literature review. Osteoporos Int. 2011;22(6):2011–5. https://doi.org/10.1007/s00198-011-1613-2.
CAS Article PubMed Google Scholar
7.Aronson J, Good B, Stewart C, Harrison B, Harp J. Preliminary studies of mineralization during distraction osteogenesis. Clin Orthop Relat Res. 1990;250:43–9.
8.Li G, Virdi AS, Ashhurst DE, Simpson AH, Triffitt JT. Tissues formed during distraction osteogenesis in the rabbit are determined by the distraction rate: localization of the cells that express the mRNAs and the distribution of types I and II collagens. Cell Biol Int. 2000;24(1):25–33. https://doi.org/10.1006/cbir.1999.0449.
9.Garcia FL, Picado CH, Garcia SB. Histology of the regenerate and docking site in bone transport. Arch Orthop Trauma Surg. 2009;129(4):549–58. https://doi.org/10.1007/s00402-008-0587-9.
10.Lopez-Pliego EM, Giraldez-Sanchez MA, Mora-Macias J, Reina-Romo E, Dominguez J. Histological evolution of the regenerate during bone transport: an experimental study in sheep. Injury. 2016;47(Suppl 3):S7–14. https://doi.org/10.1016/S0020-1383(16)30600-3.
11.Fink B, Pollnau C, Vogel M, Skripitz R, Enderle A. Histomorphometry of distraction osteogenesis during experimental tibial lengthening. J Orthop Trauma. 2003;17(2):113–8. https://doi.org/10.1097/00005131-200302000-00006.
12.Kusec V, Jelic M, Borovecki F, Kos J, Vukicevic S, Korzinek K. Distraction osteogenesis by Ilizarov and unilateral external fixators in a canine model. Int Orthop. 2003;27(1):47–52. https://doi.org/10.1007/s00264-002-0391-z.
CAS Article PubMed Google Scholar
13.Li G, Simpson AH, Triffitt JT. The role of chondrocytes in intramembranous and endochondral ossification during distraction osteogenesis in the rabbit. Calcif Tissue Int. 1999;64(4):310–7. https://doi.org/10.1007/s002239900625.
CAS Article PubMed Google Scholar
14.Yang L, Tsang KY, Tang HC, Chan D, Cheah KS. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci USA. 2014;111(33):12097–102. https://doi.org/10.1073/pnas.1302703111.
CAS Article PubMed PubMed Central Google Scholar
15.Lopez-Pliego EM, Mora-Macias J, Giraldez-Sanchez MA, Dominguez J, Reina-Romo E. Histological study of the docking site after bone transport. Temporal evolution in a sheep model. Injury. 2018;49(11):1987–92. https://doi.org/10.1016/j.injury.2018.09.028.
16.Aronson J. Temporal and spatial increases in blood flow during distraction osteogenesis. Clin Orthop Relat Res. 1994;301:124–31.
17.Jia Y, Zhu Y, Qiu S, Xu J, Chai Y. Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis. Stem Cell Res Ther. 2019;10(1):12. https://doi.org/10.1186/s13287-018-1115-7.
CAS Article PubMed PubMed Central Google Scholar
18.Fu F, Zhang K. Research progress of the role of periosteum in distraction osteogenesis. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2017;31(7):876–9. https://doi.org/10.7507/1002-1892.201701073.
19.Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J. 2004;18(9):980–2. https://doi.org/10.1096/fj.03-1100fje.
20.Schuelke J, Meyers N, Reitmaier S, Klose S, Ignatius A, Claes L. Intramembranous bone formation after callus distraction is augmented by increasing axial compressive strain. PLoS ONE. 2018;13(4):e0195466. https://doi.org/10.1371/journal.pone.0195466.
CAS Article PubMed PubMed Central Google Scholar
21.Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med. 2000;191(2):275–86. https://doi.org/10.1084/jem.191.2.275.
CAS Article PubMed PubMed Central Google Scholar
22.Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8(5):739–50. https://doi.org/10.1016/j.devcel.2005.03.016.
23.Cho TJ, Kim JA, Chung CY, Yoo WJ, Gerstenfeld LC, Einhorn TA, et al. Expression and role of interleukin-6 in distraction osteogenesis. Calcif Tissue Int. 2007;80(3):192–200. https://doi.org/10.1007/s00223-006-0240-y.
CAS Article PubMed Google Scholar
24.Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res. 2008;87(2):107–18. https://doi.org/10.1177/154405910808700215.
CAS Article PubMed Google Scholar
25.Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Rey JM, Garcia-Garcia A. RANK/RANKL/OPG role in distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(5):679–86. https://doi.org/10.1016/j.tripleo.2009.10.042.
26.Bouletreau P, Longaker MT. The molecular biology of distraction osteogenesis. Rev Stomatol Chir Maxillofac. 2004;105(1):23–5. https://doi.org/10.1016/s0035-1768(04)72909-5.
CAS Article PubMed Google Scholar
27.Wang X, Luo E, Bi R, Ye B, Hu J, Zou S. Wnt/beta-catenin signaling is required for distraction osteogenesis in rats. Connect Tissue Res. 2018;59(1):45–54. https://doi.org/10.1080/03008207.2017.1300154.
CAS Article PubMed Google Scholar
28.Kasaai B, Moffatt P, Al-Salmi L, Lauzier D, Lessard L, Hamdy RC. Spatial and temporal localization of WNT signaling proteins in a mouse model of distraction osteogenesis. J Histochem Cytochem. 2012;60(3):219–28. https://doi.org/10.1369/0022155411432010.
CAS Article PubMed PubMed Central Google Scholar
29.Alzahrani MM, Makhdom AM, Rauch F, Lauzier D, Kotsiopriftis M, Ghadakzadeh S, et al. Assessment of the effect of systemic delivery of sclerostin antibodies on Wnt signaling in distraction osteogenesis. J Bone Miner Metab. 2018;36(4):373–82. https://doi.org/10.1007/s00774-017-0847-2.
CAS Article PubMed Google Scholar
30.Wang JG, Miyazu M, Xiang P, Li SN, Sokabe M, Naruse K. Stretch-induced cell proliferation is mediated by FAK-MAPK pathway. Life Sci. 2005;76(24):2817–25. https://doi.org/10.1016/j.lfs.2004.10.050.
CAS Article PubMed Google Scholar
31.Yanoshita M, Hirose N, Okamoto Y, Sumi C, Takano M, Nishiyama S, et al. Cyclic tensile strain upregulates pro-inflammatory cytokine expression via FAK-MAPK Signaling in Chondrocytes. Inflammation. 2018;41(5):1621–30. https://doi.org/10.1007/s10753-018-0805-8.
CAS Article PubMed Google Scholar
32.Song J, Ye B, Liu H, Bi R, Zhang N, Hu J, et al. Fak-Mapk, Hippo and Wnt signalling pathway expression and regulation in distraction osteogenesis. Cell Prolif. 2018;51(4):e12453. https://doi.org/10.1111/cpr.12453.
CAS Article PubMed PubMed Central Google Scholar
33.Bak B, Jorgensen PH, Andreassen TT. The stimulating effect of growth hormone on fracture healing is dependent on onset and duration of administration. Clin Orthop Relat Res. 1991;264:295–301.
34.Bail HJ, Raschke MJ, Kolbeck S, Krummrey G, Windhagen HJ, Weiler A, et al. Recombinant species-specific growth hormone increases hard callus formation in distraction osteogenesis. Bone. 2002;30(1):117–24. https://doi.org/10.1016/s8756-3282(01)00628-7.
CAS Article PubMed Google Scholar
35.Theyse LF, Oosterlaken-Dijksterhuis MA, van Doorn J, Terlou M, Mol JA, Voorhout G, et al. Expression of osteotropic growth factors and growth hormone receptor in a canine distraction osteogenesis model. J Bone Miner Metab. 2006;24(4):266–73. https://doi.org/10.1007/s00774-006-0683-2.
CAS Article PubMed Google Scholar
36.Eingartner C, Coerper S, Fritz J, Gaissmaier C, Koveker G, Weise K. Growth factors in distraction osteogenesis. Immuno-histological pattern of TGF-beta1 and IGF-I in human callus induced by distraction osteogenesis. Int Orthop. 1999;23(5):253–9. https://doi.org/10.1007/s002640050365.
CAS Article PubMed PubMed Central Google Scholar
37.Siwicka KA, Kitoh H, Kawasumi M, Ishiguro N. Spatial and temporal distribution of growth factors receptors in the callus: implications for improvement of distraction osteogenesis. Nagoya J Med Sci. 2011;73(3–4):117–27.
CAS PubMed PubMed Central Google Scholar
38.Haque T, Amako M, Nakada S, Lauzier D, Hamdy RC. An immunohistochemical analysis of the temporal and spatial expression of growth factors FGF 1, 2 and 18, IGF 1 and 2, and TGFbeta1 during distraction osteogenesis. Histol Histopathol. 2007;22(2):119–28. https://doi.org/10.14670/HH-22.119.
留言 (0)