The Distraction Osteogenesis Callus: a Review of the Literature

1.

Qin CH, Zhang HA, Chee YH, Pitarini A, Adem AA. Comparison of the use of antibiotic-loaded calcium sulphate and wound irrigation-suction in the treatment of lower limb chronic osteomyelitis. Injury. 2019;50(2):508–14. https://doi.org/10.1016/j.injury.2018.10.036.

Article  PubMed  Google Scholar 

2.

Ferrando A, Part J, Baeza J. Treatment of cavitary bone defects in chronic osteomyelitis: biogactive glass S53P4 vs Calcium Sulphate Antibiotic Beads. J Bone Jt Infect. 2017;2(4):194–201. https://doi.org/10.7150/jbji.20404.

Article  PubMed  PubMed Central  Google Scholar 

3.

David N, Nallaiyan R. Biologically anchored chitosan/gelatin-SrHAP scaffold fabricated on titanium against chronic osteomyelitis infection. Int J Biol Macromol. 2018;110:206–14. https://doi.org/10.1016/j.ijbiomac.2017.11.174.

CAS  Article  PubMed  Google Scholar 

4.

Giannoudis PV. Treatment of bone defects: Bone transport or the induced membrane technique? Injury. 2016;47(2):291–2. https://doi.org/10.1016/j.injury.2016.01.023.

Article  PubMed  Google Scholar 

5.

Ilizarov GA. Basic principles of transosseous compression and distraction osteosynthesis. Ortop Travmatol Protez. 1971;32(11):7–15.

CAS  PubMed  Google Scholar 

6.

Sailhan F. Bone lengthening (distraction osteogenesis): a literature review. Osteoporos Int. 2011;22(6):2011–5. https://doi.org/10.1007/s00198-011-1613-2.

CAS  Article  PubMed  Google Scholar 

7.

Aronson J, Good B, Stewart C, Harrison B, Harp J. Preliminary studies of mineralization during distraction osteogenesis. Clin Orthop Relat Res. 1990;250:43–9.

Google Scholar 

8.

Li G, Virdi AS, Ashhurst DE, Simpson AH, Triffitt JT. Tissues formed during distraction osteogenesis in the rabbit are determined by the distraction rate: localization of the cells that express the mRNAs and the distribution of types I and II collagens. Cell Biol Int. 2000;24(1):25–33. https://doi.org/10.1006/cbir.1999.0449.

Article  PubMed  Google Scholar 

9.

Garcia FL, Picado CH, Garcia SB. Histology of the regenerate and docking site in bone transport. Arch Orthop Trauma Surg. 2009;129(4):549–58. https://doi.org/10.1007/s00402-008-0587-9.

Article  PubMed  Google Scholar 

10.

Lopez-Pliego EM, Giraldez-Sanchez MA, Mora-Macias J, Reina-Romo E, Dominguez J. Histological evolution of the regenerate during bone transport: an experimental study in sheep. Injury. 2016;47(Suppl 3):S7–14. https://doi.org/10.1016/S0020-1383(16)30600-3.

Article  PubMed  Google Scholar 

11.

Fink B, Pollnau C, Vogel M, Skripitz R, Enderle A. Histomorphometry of distraction osteogenesis during experimental tibial lengthening. J Orthop Trauma. 2003;17(2):113–8. https://doi.org/10.1097/00005131-200302000-00006.

Article  PubMed  Google Scholar 

12.

Kusec V, Jelic M, Borovecki F, Kos J, Vukicevic S, Korzinek K. Distraction osteogenesis by Ilizarov and unilateral external fixators in a canine model. Int Orthop. 2003;27(1):47–52. https://doi.org/10.1007/s00264-002-0391-z.

CAS  Article  PubMed  Google Scholar 

13.

Li G, Simpson AH, Triffitt JT. The role of chondrocytes in intramembranous and endochondral ossification during distraction osteogenesis in the rabbit. Calcif Tissue Int. 1999;64(4):310–7. https://doi.org/10.1007/s002239900625.

CAS  Article  PubMed  Google Scholar 

14.

Yang L, Tsang KY, Tang HC, Chan D, Cheah KS. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci USA. 2014;111(33):12097–102. https://doi.org/10.1073/pnas.1302703111.

CAS  Article  PubMed  PubMed Central  Google Scholar 

15.

Lopez-Pliego EM, Mora-Macias J, Giraldez-Sanchez MA, Dominguez J, Reina-Romo E. Histological study of the docking site after bone transport. Temporal evolution in a sheep model. Injury. 2018;49(11):1987–92. https://doi.org/10.1016/j.injury.2018.09.028.

Article  PubMed  Google Scholar 

16.

Aronson J. Temporal and spatial increases in blood flow during distraction osteogenesis. Clin Orthop Relat Res. 1994;301:124–31.

Google Scholar 

17.

Jia Y, Zhu Y, Qiu S, Xu J, Chai Y. Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis. Stem Cell Res Ther. 2019;10(1):12. https://doi.org/10.1186/s13287-018-1115-7.

CAS  Article  PubMed  PubMed Central  Google Scholar 

18.

Fu F, Zhang K. Research progress of the role of periosteum in distraction osteogenesis. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2017;31(7):876–9. https://doi.org/10.7507/1002-1892.201701073.

Article  PubMed  Google Scholar 

19.

Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J. 2004;18(9):980–2. https://doi.org/10.1096/fj.03-1100fje.

CAS  Article  Google Scholar 

20.

Schuelke J, Meyers N, Reitmaier S, Klose S, Ignatius A, Claes L. Intramembranous bone formation after callus distraction is augmented by increasing axial compressive strain. PLoS ONE. 2018;13(4):e0195466. https://doi.org/10.1371/journal.pone.0195466.

CAS  Article  PubMed  PubMed Central  Google Scholar 

21.

Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med. 2000;191(2):275–86. https://doi.org/10.1084/jem.191.2.275.

CAS  Article  PubMed  PubMed Central  Google Scholar 

22.

Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8(5):739–50. https://doi.org/10.1016/j.devcel.2005.03.016.

CAS  Article  Google Scholar 

23.

Cho TJ, Kim JA, Chung CY, Yoo WJ, Gerstenfeld LC, Einhorn TA, et al. Expression and role of interleukin-6 in distraction osteogenesis. Calcif Tissue Int. 2007;80(3):192–200. https://doi.org/10.1007/s00223-006-0240-y.

CAS  Article  PubMed  Google Scholar 

24.

Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res. 2008;87(2):107–18. https://doi.org/10.1177/154405910808700215.

CAS  Article  PubMed  Google Scholar 

25.

Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Rey JM, Garcia-Garcia A. RANK/RANKL/OPG role in distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(5):679–86. https://doi.org/10.1016/j.tripleo.2009.10.042.

Article  PubMed  Google Scholar 

26.

Bouletreau P, Longaker MT. The molecular biology of distraction osteogenesis. Rev Stomatol Chir Maxillofac. 2004;105(1):23–5. https://doi.org/10.1016/s0035-1768(04)72909-5.

CAS  Article  PubMed  Google Scholar 

27.

Wang X, Luo E, Bi R, Ye B, Hu J, Zou S. Wnt/beta-catenin signaling is required for distraction osteogenesis in rats. Connect Tissue Res. 2018;59(1):45–54. https://doi.org/10.1080/03008207.2017.1300154.

CAS  Article  PubMed  Google Scholar 

28.

Kasaai B, Moffatt P, Al-Salmi L, Lauzier D, Lessard L, Hamdy RC. Spatial and temporal localization of WNT signaling proteins in a mouse model of distraction osteogenesis. J Histochem Cytochem. 2012;60(3):219–28. https://doi.org/10.1369/0022155411432010.

CAS  Article  PubMed  PubMed Central  Google Scholar 

29.

Alzahrani MM, Makhdom AM, Rauch F, Lauzier D, Kotsiopriftis M, Ghadakzadeh S, et al. Assessment of the effect of systemic delivery of sclerostin antibodies on Wnt signaling in distraction osteogenesis. J Bone Miner Metab. 2018;36(4):373–82. https://doi.org/10.1007/s00774-017-0847-2.

CAS  Article  PubMed  Google Scholar 

30.

Wang JG, Miyazu M, Xiang P, Li SN, Sokabe M, Naruse K. Stretch-induced cell proliferation is mediated by FAK-MAPK pathway. Life Sci. 2005;76(24):2817–25. https://doi.org/10.1016/j.lfs.2004.10.050.

CAS  Article  PubMed  Google Scholar 

31.

Yanoshita M, Hirose N, Okamoto Y, Sumi C, Takano M, Nishiyama S, et al. Cyclic tensile strain upregulates pro-inflammatory cytokine expression via FAK-MAPK Signaling in Chondrocytes. Inflammation. 2018;41(5):1621–30. https://doi.org/10.1007/s10753-018-0805-8.

CAS  Article  PubMed  Google Scholar 

32.

Song J, Ye B, Liu H, Bi R, Zhang N, Hu J, et al. Fak-Mapk, Hippo and Wnt signalling pathway expression and regulation in distraction osteogenesis. Cell Prolif. 2018;51(4):e12453. https://doi.org/10.1111/cpr.12453.

CAS  Article  PubMed  PubMed Central  Google Scholar 

33.

Bak B, Jorgensen PH, Andreassen TT. The stimulating effect of growth hormone on fracture healing is dependent on onset and duration of administration. Clin Orthop Relat Res. 1991;264:295–301.

Google Scholar 

34.

Bail HJ, Raschke MJ, Kolbeck S, Krummrey G, Windhagen HJ, Weiler A, et al. Recombinant species-specific growth hormone increases hard callus formation in distraction osteogenesis. Bone. 2002;30(1):117–24. https://doi.org/10.1016/s8756-3282(01)00628-7.

CAS  Article  PubMed  Google Scholar 

35.

Theyse LF, Oosterlaken-Dijksterhuis MA, van Doorn J, Terlou M, Mol JA, Voorhout G, et al. Expression of osteotropic growth factors and growth hormone receptor in a canine distraction osteogenesis model. J Bone Miner Metab. 2006;24(4):266–73. https://doi.org/10.1007/s00774-006-0683-2.

CAS  Article  PubMed  Google Scholar 

36.

Eingartner C, Coerper S, Fritz J, Gaissmaier C, Koveker G, Weise K. Growth factors in distraction osteogenesis. Immuno-histological pattern of TGF-beta1 and IGF-I in human callus induced by distraction osteogenesis. Int Orthop. 1999;23(5):253–9. https://doi.org/10.1007/s002640050365.

CAS  Article  PubMed  PubMed Central  Google Scholar 

37.

Siwicka KA, Kitoh H, Kawasumi M, Ishiguro N. Spatial and temporal distribution of growth factors receptors in the callus: implications for improvement of distraction osteogenesis. Nagoya J Med Sci. 2011;73(3–4):117–27.

CAS  PubMed  PubMed Central  Google Scholar 

38.

Haque T, Amako M, Nakada S, Lauzier D, Hamdy RC. An immunohistochemical analysis of the temporal and spatial expression of growth factors FGF 1, 2 and 18, IGF 1 and 2, and TGFbeta1 during distraction osteogenesis. Histol Histopathol. 2007;22(2):119–28. https://doi.org/10.14670/HH-22.119.

CAS  Article 

留言 (0)

沒有登入
gif