Benayoun BA, Caburet S, Veitia RA. Forkhead transcription factors: key players in health and disease. Trends Genet. 2011;27(6):224–32. https://doi.org/10.1016/j.tig.2011.03.003.
Saleem RA, Banerjee-Basu S, Murphy TC, Baxevanis A, Walter MA. Essential structural and functional determinants within the forkhead domain of FOXC1. Nucleic Acids Res. 2004;32(14):4182–93. https://doi.org/10.1093/nar/gkh742.
Article PubMed PubMed Central Google Scholar
Li K, Tang M, Xu M, Yu Y. A novel missense mutation of FOXC1 in an Axenfeld-Rieger syndrome patient with a congenital atrial septal defect and sublingual cyst: a case report and literature review. BMC Med Genomics. 2021;14(1):1–10. https://doi.org/10.1186/s12920-021-01103-w.
Hata K, Takahata Y, Murakami T, Nishimura R. Transcriptional network controlling endochondral ossification. J Bone Metab 2017;24(2):75–82. https://doi.org/10.11005/2Fjbm.2017.24.2.75
Jackson BC, Carpenter C, Nebert DW, Vasiliou V. Update of human and mouse forkhead box (FOX) gene families. Hum Genomics. 2010;4:345–52. https://doi.org/10.1186/1479-7364-4-5-345.
Article PubMed PubMed Central Google Scholar
Kume T. The cooperative roles of FOXC1 and FoxC2 in cardiovascular development. Forkhead transcription factors. Vital Elements Biol Med 2009;665:63–77. https://doi.org/10.1007/978-1-4419-1599-3_5
Storz P. Forkhead homeobox type O transcription factors in the responses to oxidative stress. Antioxid Redox Signal. 2011;14(4):593–605. https://doi.org/10.1089/ars.2010.3405.
Article PubMed PubMed Central Google Scholar
Takahashi H, Takahashi K, Liu FC. FOXP genes, neural development, speech and language disorders. Forkhead Transcription Factors: Vital Elements Biol Med. 2009;665:117–29. https://doi.org/10.1007/978-1-4419-1599-3_9.
Zona S, Bella L, Burton MJ, de Moraes GN, Lam EW. FOXM1: an emerging master regulator of DNA damage response and genotoxic agent resistance. Biochim Biophys Acta Gene Regul Mech. 2014;1839(11):1316–22. https://doi.org/10.1016/j.bbagrm.2014.09.016.
Yu C, Li X, Zhao Y, Hu Y. The role of FOXA family transcription factors in glucolipid metabolism and NAFLD. Front Endocrinol. 2023;14:1–16. https://doi.org/10.3389/fendo.2023.1081500.
Ariani F, Hayek G, Rondinella D, Artuso R, Mencarelli MA, Spanhol-Rosseto A, Pollazzon M, Buoni S, Spiga O, Ricciardi S, Meloni I. FOXG1 is responsible for the congenital variant of Rett syndrome. Am J Hum Genet. 2008;83(1):89–93. https://doi.org/10.1016/j.ajhg.2008.05.015.
Article PubMed PubMed Central Google Scholar
Pisarska MD, Barlow G, Kuo FT. Minireview: roles of the forkhead transcription factor FOXL2 in granulosa cell biology and pathology. Endocrinol. 2011;152(4):1199–208. https://doi.org/10.1210/en.2010-1041.
Berry FB, Saleem RA, Walter MA. FOXC1 transcriptional regulation is mediated by N- and C-terminal activation domains and contains a phosphorylated transcriptional inhibitory domain. J Biol Chem. 2002;277:10292–7. https://doi.org/10.1074/jbc.M110266200.
Wilm B, James RG, Schultheiss TM, Hogan BL. The forkhead genes, FOXC1 and FOXC2, regulate paraxial versus intermediate mesoderm cell fate. Dev Biol. 2004;271(1):176–89. https://doi.org/10.1016/j.ydbio.2004.03.034.
Rice R, Rice DP, Thesleff I. FOXC1 integrates FGF and BMP signalling independently of twist or noggin during calvarial bone development. Dev Dyn. 2005;233(3):847–52. https://doi.org/10.1002/dvdy.20430.
Seo S, Fujita H, Nakano A, Kang M, Duarte A, Kume T. The forkhead transcription factors, FOXC1 and FOXC2, are required for arterial specification and lymphatic sprouting during vascular development. Dev Biol. 2006;294(2):458–70. https://doi.org/10.1016/j.ydbio.2006.03.035.
Seo S, Chen L, Liu W, Zhao D, Schultz KM, Sasman A, Liu T, Zhang HF, Gage PJ, Kume T. FOXC1 and FOXC2 in the neural crest are required for ocular anterior segment development. Invest Ophthalmol Vis Sci. 2017;58(3):1368–77. https://doi.org/10.1167/iovs.16-21217.
Article PubMed PubMed Central Google Scholar
Du RF, Huang H, Fan LL, Li XP, Xia K, Xiang R. A novel mutation of FOXC1 (R127L) in an Axenfeld-Rieger syndrome family with glaucoma and multiple congenital heart diseases. Ophthalmic Genet. 2016;37(1):111–5. https://doi.org/10.3109/13816810.2014.924016.
Wang R, Wang WQ, Li XQ, Zhao J, Yang K, Feng Y, Guo MM, Liu M, Liu X, Wang X, Yuan YY. A novel variant in FOXC1 associated with atypical Axenfeld-Rieger syndrome. BMC Med Genomics. 2021;14(1):1–9. https://doi.org/10.1186/s12920-021-01130-7.
Smith RS, Zabaleta A, Kume T, Savinova OV, Kidson SH, Martin JE, Nishimura DY, Alward WL, Hogan BL, John SW. Haploinsufficiency of the transcription factors FOXC1 and FOXC2 results in aberrant ocular development. Hum Mol Genet. 2000;9(7):1021–32. https://doi.org/10.1093/hmg/9.7.1021.
Reis LM, Tyler RC, Volkmann Kloss BA, Schilter KF, Levin AV, Lowry RB, Zwijnenburg PJ, Stroh E, Broeckel U, Murray JC, Semina EV. PITX2 and FOXC1 spectrum of mutations in ocular syndromes. Eur J Hum Genet. 2012;20(12):1224–33. https://doi.org/10.1038/ejhg.2012.80.
Article PubMed PubMed Central Google Scholar
Aldinger KA, Lehmann OJ, Hudgins L, Chizhikov VV, Bassuk AG, Ades LC, Krantz ID, Dobyns WB, Millen KJ. FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nat Genet. 2009;41(9):1037–42. https://doi.org/10.1038/ng.422.
Article PubMed PubMed Central Google Scholar
Tümer Z, Bach-Holm D. Axenfeld-Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. Eur J Hum Genet. 2009;17(12):1527–39. https://doi.org/10.1038/ejhg.2009.93.
Article PubMed PubMed Central Google Scholar
Gripp KW, Hopkins E, Jenny K, Thacker D, Salvin J. Cardiac anomalies in Axenfeld-Rieger syndrome due to a novel FOXC1 mutation. Am J Med Genet. 2013;161(1):114–9. https://doi.org/10.1002/ajmg.a.35697.
Garza Flores A, Nordgren I, Pettersson M, Dias-Santagata D, Nilsson D, Hammarsjö A, Lindstrand A, Batkovskyte D, Wiggs J, Walton DS, Goldenberg P, Eisfeldt J, Lin AE, Lachman RS, Nishimura G, Grigelioniene G. Case report: extending the spectrum of clinical and molecular findings in FOXC1 haploinsufficiency syndrome. Front Genet. 2023;14:1–8. https://doi.org/10.3389/fgene.2023.1174046.
Yoshida M, Hata K, Takashima R, Ono K, Nakamura E, Takahata Y, Murakami T, Iseki S, Takano-Yamamoto T, Nishimura R, Yoneda T. The transcription factor FOXC1 is necessary for IHH-GLI2-regulated endochondral ossification. Nat Commun. 2015;6(1):1–15. https://doi.org/10.1038/ncomms7653.
Seo S, Kume T. Forkhead transcription factors, FOXC1 and FOXC2, are required for the morphogenesis of the cardiac outflow tract. Dev Biol. 2006;296(2):421–36. https://doi.org/10.1016/j.ydbio.2006.06.012.
Lambers E, Arnone B, Fatima A, Qin G, Wasserstrom JA, Kume T. FOXC1 regulates early cardiomyogenesis and functional properties of embryonic stem cell derived cardiomyocytes. Stem Cells. 2016;34(6):1487–500. https://doi.org/10.1002/stem.2301.
Zhao L, Zhang R, Su F, Dai L, Wang J, Cui J, Huang W, Zhang S. FOXC1-induced vascular niche improves survival and myocardial repair of mesenchymal stem cells in infarcted hearts. Oxid Med Cell Longev. 2020;2020:1–17. https://doi.org/10.1155/2020/7865395.
Kume T, Jiang H, Topczewska JM, Hogan BL. The murine winged helix transcription factors, FOXC1 and FOXC2, are both required for cardiovascular development and somitogenesis. Genes Dev. 2001;15(18):2470–82. https://doi.org/10.1101/gad.907301.
Article PubMed PubMed Central Google Scholar
Lambers E, Arnone B, Fatima A, Qin G, Wasserstrom JA, Kume T. Foxc1 regulates early cardiomyogenesis and functional properties of embryonic stem cell derived cardiomyocytes. Stem Cells. 2016;34:1487–500. https://doi.org/10.1002/stem.2301.
Tan C, Norden PR, Yu W, Liu T, Ujiie N, Lee SK, Yan X, Dyakiv Y, Aoto K, Ortega S, De Plaen IG. Endothelial FOXC1 and FOXC2 promote intestinal regeneration after ischemia–reperfusion injury. EMBO Rep 2023;24(7):1–27 https://doi.org/10.15252/embr.202256030
Sudo H, Takahashi Y, Tonegawa A, Arase Y, Aoyama H, Mizutani-Koseki Y, Moriya H, Wilting J, Christ B, Koseki H. Inductive signals from the somatopleure mediated by bone morphogenetic proteins are essential for the formation of the sternal component of avian ribs. Dev Biol. 2001;232(2):284–300. https://doi.org/10.1006/dbio.2001.0198.
留言 (0)