An Overview of Osteoporosis and Possible Treatment Approaches

Xue F, Zhao Z, Gu Y, Han J, Ye K, Zhang Y. 7,8-dihydroxyflavone modulates bone formation and resorption and ameliorates ovariectomy-induced osteoporosis. Elife. 2021. https://doi.org/10.7554/eLife.64872.

Article  PubMed  PubMed Central  Google Scholar 

Cooper C, Melton LJ. Epidemiology of osteoporosis. Trends Endocrinol Metab. 1992;3(6):224–9. https://doi.org/10.1016/1043-2760(92)90032-V.

Article  CAS  PubMed  Google Scholar 

Zeghoud S, Ben Amor I, Alhamad AA, Darwish L, Hemmami H. Osteoporosis therapy using nanoparticles: a review,. Ann med surg. 2024;86(1):284. https://doi.org/10.1097/MS9.0000000000001467.

Article  Google Scholar 

Haffner-Luntzer M, et al. Review of animal models of comorbidities in fracture-healing research. J Orthop Res. 2019;37(12):2491–8. https://doi.org/10.1002/jor.24454. John Wiley and Sons Inc.

Article  PubMed  Google Scholar 

Eminov E, Hortu I, Akman L, Erbas O, Yavasoglu A, Cirpan T. Exenatide preserves trabecular bone microarchitecture in experimental ovariectomized rat model. Arch Gynecol Obstet. 2018;297(6):1587–93. https://doi.org/10.1007/s00404-018-4776-7.

Article  CAS  PubMed  Google Scholar 

Khosla S, Riggs BL. Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin North Am. 2005;34(4):1015–30. https://doi.org/10.1016/J.ECL.2005.07.009.

Article  CAS  PubMed  Google Scholar 

Knudtson M. Osteoporosis: background and overview. The Journal for Nurse Practitioners. 2009;5(6):S4–12. https://doi.org/10.1016/J.NURPRA.2009.03.014.

Article  Google Scholar 

El Miedany Y, et al. Egyptian consensus on treat-to-target approach for osteoporosis: a clinical practice guideline from the Egyptian Academy of bone health and metabolic bone diseases. Egypt Rheumatol Rehabil. 2021. https://doi.org/10.1186/s43166-020-00056-9.

Article  Google Scholar 

Salari N, et al. The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg Res. 2021;16(1). https://doi.org/10.1186/s13018-021-02772-0.

Article  PubMed  PubMed Central  Google Scholar 

Sozen T, Ozisik L, Calik Basaran N. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4(1):46–56. https://doi.org/10.5152/eurjrheum.2016.048.

Article  PubMed  Google Scholar 

Kalu DN, Orhii PB. Calcium absorption and bone loss in ovariectomized rats fed varying levels of dietary calcium. Calcif Tissue Int. 1999;65(1):73–7. https://doi.org/10.1007/S002239900660.

Article  CAS  PubMed  Google Scholar 

Compston J. Bone quality: what is it and how is it measured? Arq Bras Endocrinol Metabol. 2006;50(4):579–85. https://doi.org/10.1590/S0004-27302006000400003.

Article  PubMed  Google Scholar 

Lelovas PP, Xanthos TT, Thorma SE, Lyritis GP, Dontas IA. The laboratory rat as an animal model for osteoporosis research. Comp Med. 2008;58(5):424. Accessed 02 Mar 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2707131/.

Pavone V, Testa G, Giardina SMC, Vescio A, Restivo DA, Sessa G. Pharmacological therapy of osteoporosis: a systematic current review of literature. Front Pharmacol. 2017. https://doi.org/10.3389/FPHAR.2017.00803.

Article  PubMed  PubMed Central  Google Scholar 

Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis,. Ther Adv Musculoskelet Dis. 2016;8(6):225–35. https://doi.org/10.1177/1759720X16670154. SAGE Publications Ltd.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hadjidakis DJ, Androulakis II. Bone remodeling. Ann. N Y. Acad Sci. 2006. https://doi.org/10.1196/annals.1365.035. Blackwell Publishing Inc.

Article  PubMed  Google Scholar 

Seeman E. Age- and menopause-related bone loss compromise cortical and trabecular microstructure. The Journals of Gerontology: Series A. 2013;68(10):1218–25. https://doi.org/10.1093/GERONA/GLT071.

Article  Google Scholar 

Orwoll ES. Toward an expanded understanding of the role of the periosteum in skeletal health. J Bone Miner Res. 2003;18(6):949–54. https://doi.org/10.1359/JBMR.2003.18.6.949.

Article  PubMed  Google Scholar 

Dempster DW, et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study*. J Bone Miner Res. 2001;16(10):1846–53. https://doi.org/10.1359/JBMR.2001.16.10.1846.

Article  CAS  PubMed  Google Scholar 

Bliziotes M, Sibonga JD, Turner RT, Orwoll E. Periosteal remodeling at the femoral neck in nonhuman primates. J Bone Miner Res. 2006;21(7):1060–7. https://doi.org/10.1359/JBMR.060414.

Article  PubMed  Google Scholar 

Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther Adv Musculoskelet Dis. 2016;8(6):225. https://doi.org/10.1177/1759720X16670154.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Porter JL, Varacallo M. Osteoporosis. StatPearls. 2023, Accessed 03 Nov 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK441901/.

 Jee WSS, Yao W. Overview: animal models of osteopenia and osteoporosis. 2001.

Yousefzadeh N, Kashfi K, Jeddi S, Ghasemi A. Ovariectomized rat model of osteoporosis: a practical guide. EXCLI Journal. 2020;19:89–107. https://doi.org/10.17179/excli2019-1990. Leibniz Research Centre for Working Environment and Human Factors.

Article  PubMed  PubMed Central  Google Scholar 

Shen V, et al. Prednisolone alone, or in combination with estrogen or dietary calcium deficiency or immobilization, inhibits bone formation but does not induce bone loss in mature rats. 1997.

Turner AS. Animal models of osteoporosis–necessity and limitations. Eur Cell Mater. 2001;1:66–81. https://doi.org/10.22203/ECM.V001A08.

Article  CAS  PubMed  Google Scholar 

Jee WSS, Yao W. Overview: animal models of osteopenia and osteoporosis. J Musculoskel Neuron Interact. 2001;1(3):193–207.

CAS  Google Scholar 

Johnston DB, Ward WE. The ovariectomized rat as a model for studying alveolar bone loss in postmenopausal women. Biomed Res Int. 2015. https://doi.org/10.1155/2015/635023.

Article  PubMed  PubMed Central  Google Scholar 

Pajamäki I, Sievänen H, Kannus P, Jokihaara J, Vuohelainen T, Järvinen TLN. Skeletal effects of estrogen and mechanical loading are structurally distinct. Bone. 2008;43(4):748–57. https://doi.org/10.1016/J.BONE.2008.06.005.

Article  PubMed  Google Scholar 

Westerlind KC, et al. Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain. Proc Natl Acad Sci U S A. 1997;94(8):4199. https://doi.org/10.1073/PNAS.94.8.4199.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li L, et al. Influence of exercise on bone remodeling-related hormones and cytokines in ovariectomized rats: a model of postmenopausal osteoporosis. PLoS ONE. 2014;9(11): e112845. https://doi.org/10.1371/JOURNAL.PONE.0112845.

Article  PubMed  PubMed Central  Google Scholar 

Wronski TJ, Dann LM, Scott KS, Cintrón M. Long-term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int. 1989;45(6):360–6. https://doi.org/10.1007/BF02556007.

Article  CAS  PubMed  Google Scholar 

Wronski TJ, Cintrón M, Dann LM. Temporal relationship between bone loss and increased bone turnover in ovariectomized rats. Calcif Tissue Int. 1988;43(3):179–83. https://doi.org/10.1007/BF02571317.

Article  CAS  PubMed  Google Scholar 

Wronski TJ, Dann LM, Horner SL. Time course of vertebral osteopenia in ovariectomized rats. Bone. 1989;10(4):295–301. https://doi.org/10.1016/8756-3282(89)90067-7.

Article  CAS  PubMed  Google Scholar 

Sequeira L, Nguyen J, Wang L, Nohe A. A novel peptide, CK2.3, improved bone formation in ovariectomized Sprague Dawley rats. Int J Mol Sci. 2020;21(14):4874. https://doi.org/10.3390/IJMS21144874.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fritton JC, et al. Growth hormone protects against ovariectomy-induced bone loss in states of low circulating insulin-like growth factor (IGF-1). J Bone Miner Res. 2010;25(2):235. https://doi.org/10.1359/JBMR.090723.

Article  CAS  PubMed  Google Scholar 

Wei Wang J, Li W, Wen Xu S, Yang DS, Feng Zhao G. Sequential changes in biomechanical competence of femoral neck and marrow cavity of proximal femur in ovariectomized rats. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2005;34(5). https://doi.org/10.3785/J.ISSN.1008-9292.2005.05.011.

Article  PubMed  Google Scholar 

Zhang X, et al. Promoting osteointegration effect of Cu-alloyed titanium in ovariectomized rats. Regen Biomater. 2022. https://doi.org/10.1093/RB/RBAC011.

Article  PubMed  PubMed Central  Google Scholar 

Mosekilde L, Danielsen CC, Knudsen UB. The effect of aging and ovariectomy on the vertebral bone mass and biomechanical properties of mature rats. Bone. 1993;14(1):1–6. https://doi.org/10.1016/8756-3282(93)90248-9.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif