Xue F, Zhao Z, Gu Y, Han J, Ye K, Zhang Y. 7,8-dihydroxyflavone modulates bone formation and resorption and ameliorates ovariectomy-induced osteoporosis. Elife. 2021. https://doi.org/10.7554/eLife.64872.
Article PubMed PubMed Central Google Scholar
Cooper C, Melton LJ. Epidemiology of osteoporosis. Trends Endocrinol Metab. 1992;3(6):224–9. https://doi.org/10.1016/1043-2760(92)90032-V.
Article CAS PubMed Google Scholar
Zeghoud S, Ben Amor I, Alhamad AA, Darwish L, Hemmami H. Osteoporosis therapy using nanoparticles: a review,. Ann med surg. 2024;86(1):284. https://doi.org/10.1097/MS9.0000000000001467.
Haffner-Luntzer M, et al. Review of animal models of comorbidities in fracture-healing research. J Orthop Res. 2019;37(12):2491–8. https://doi.org/10.1002/jor.24454. John Wiley and Sons Inc.
Eminov E, Hortu I, Akman L, Erbas O, Yavasoglu A, Cirpan T. Exenatide preserves trabecular bone microarchitecture in experimental ovariectomized rat model. Arch Gynecol Obstet. 2018;297(6):1587–93. https://doi.org/10.1007/s00404-018-4776-7.
Article CAS PubMed Google Scholar
Khosla S, Riggs BL. Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin North Am. 2005;34(4):1015–30. https://doi.org/10.1016/J.ECL.2005.07.009.
Article CAS PubMed Google Scholar
Knudtson M. Osteoporosis: background and overview. The Journal for Nurse Practitioners. 2009;5(6):S4–12. https://doi.org/10.1016/J.NURPRA.2009.03.014.
El Miedany Y, et al. Egyptian consensus on treat-to-target approach for osteoporosis: a clinical practice guideline from the Egyptian Academy of bone health and metabolic bone diseases. Egypt Rheumatol Rehabil. 2021. https://doi.org/10.1186/s43166-020-00056-9.
Salari N, et al. The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg Res. 2021;16(1). https://doi.org/10.1186/s13018-021-02772-0.
Article PubMed PubMed Central Google Scholar
Sozen T, Ozisik L, Calik Basaran N. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4(1):46–56. https://doi.org/10.5152/eurjrheum.2016.048.
Kalu DN, Orhii PB. Calcium absorption and bone loss in ovariectomized rats fed varying levels of dietary calcium. Calcif Tissue Int. 1999;65(1):73–7. https://doi.org/10.1007/S002239900660.
Article CAS PubMed Google Scholar
Compston J. Bone quality: what is it and how is it measured? Arq Bras Endocrinol Metabol. 2006;50(4):579–85. https://doi.org/10.1590/S0004-27302006000400003.
Lelovas PP, Xanthos TT, Thorma SE, Lyritis GP, Dontas IA. The laboratory rat as an animal model for osteoporosis research. Comp Med. 2008;58(5):424. Accessed 02 Mar 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2707131/.
Pavone V, Testa G, Giardina SMC, Vescio A, Restivo DA, Sessa G. Pharmacological therapy of osteoporosis: a systematic current review of literature. Front Pharmacol. 2017. https://doi.org/10.3389/FPHAR.2017.00803.
Article PubMed PubMed Central Google Scholar
Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis,. Ther Adv Musculoskelet Dis. 2016;8(6):225–35. https://doi.org/10.1177/1759720X16670154. SAGE Publications Ltd.
Article CAS PubMed PubMed Central Google Scholar
Hadjidakis DJ, Androulakis II. Bone remodeling. Ann. N Y. Acad Sci. 2006. https://doi.org/10.1196/annals.1365.035. Blackwell Publishing Inc.
Seeman E. Age- and menopause-related bone loss compromise cortical and trabecular microstructure. The Journals of Gerontology: Series A. 2013;68(10):1218–25. https://doi.org/10.1093/GERONA/GLT071.
Orwoll ES. Toward an expanded understanding of the role of the periosteum in skeletal health. J Bone Miner Res. 2003;18(6):949–54. https://doi.org/10.1359/JBMR.2003.18.6.949.
Dempster DW, et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study*. J Bone Miner Res. 2001;16(10):1846–53. https://doi.org/10.1359/JBMR.2001.16.10.1846.
Article CAS PubMed Google Scholar
Bliziotes M, Sibonga JD, Turner RT, Orwoll E. Periosteal remodeling at the femoral neck in nonhuman primates. J Bone Miner Res. 2006;21(7):1060–7. https://doi.org/10.1359/JBMR.060414.
Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther Adv Musculoskelet Dis. 2016;8(6):225. https://doi.org/10.1177/1759720X16670154.
Article CAS PubMed PubMed Central Google Scholar
Porter JL, Varacallo M. Osteoporosis. StatPearls. 2023, Accessed 03 Nov 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK441901/.
Jee WSS, Yao W. Overview: animal models of osteopenia and osteoporosis. 2001.
Yousefzadeh N, Kashfi K, Jeddi S, Ghasemi A. Ovariectomized rat model of osteoporosis: a practical guide. EXCLI Journal. 2020;19:89–107. https://doi.org/10.17179/excli2019-1990. Leibniz Research Centre for Working Environment and Human Factors.
Article PubMed PubMed Central Google Scholar
Shen V, et al. Prednisolone alone, or in combination with estrogen or dietary calcium deficiency or immobilization, inhibits bone formation but does not induce bone loss in mature rats. 1997.
Turner AS. Animal models of osteoporosis–necessity and limitations. Eur Cell Mater. 2001;1:66–81. https://doi.org/10.22203/ECM.V001A08.
Article CAS PubMed Google Scholar
Jee WSS, Yao W. Overview: animal models of osteopenia and osteoporosis. J Musculoskel Neuron Interact. 2001;1(3):193–207.
Johnston DB, Ward WE. The ovariectomized rat as a model for studying alveolar bone loss in postmenopausal women. Biomed Res Int. 2015. https://doi.org/10.1155/2015/635023.
Article PubMed PubMed Central Google Scholar
Pajamäki I, Sievänen H, Kannus P, Jokihaara J, Vuohelainen T, Järvinen TLN. Skeletal effects of estrogen and mechanical loading are structurally distinct. Bone. 2008;43(4):748–57. https://doi.org/10.1016/J.BONE.2008.06.005.
Westerlind KC, et al. Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain. Proc Natl Acad Sci U S A. 1997;94(8):4199. https://doi.org/10.1073/PNAS.94.8.4199.
Article CAS PubMed PubMed Central Google Scholar
Li L, et al. Influence of exercise on bone remodeling-related hormones and cytokines in ovariectomized rats: a model of postmenopausal osteoporosis. PLoS ONE. 2014;9(11): e112845. https://doi.org/10.1371/JOURNAL.PONE.0112845.
Article PubMed PubMed Central Google Scholar
Wronski TJ, Dann LM, Scott KS, Cintrón M. Long-term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int. 1989;45(6):360–6. https://doi.org/10.1007/BF02556007.
Article CAS PubMed Google Scholar
Wronski TJ, Cintrón M, Dann LM. Temporal relationship between bone loss and increased bone turnover in ovariectomized rats. Calcif Tissue Int. 1988;43(3):179–83. https://doi.org/10.1007/BF02571317.
Article CAS PubMed Google Scholar
Wronski TJ, Dann LM, Horner SL. Time course of vertebral osteopenia in ovariectomized rats. Bone. 1989;10(4):295–301. https://doi.org/10.1016/8756-3282(89)90067-7.
Article CAS PubMed Google Scholar
Sequeira L, Nguyen J, Wang L, Nohe A. A novel peptide, CK2.3, improved bone formation in ovariectomized Sprague Dawley rats. Int J Mol Sci. 2020;21(14):4874. https://doi.org/10.3390/IJMS21144874.
Article CAS PubMed PubMed Central Google Scholar
Fritton JC, et al. Growth hormone protects against ovariectomy-induced bone loss in states of low circulating insulin-like growth factor (IGF-1). J Bone Miner Res. 2010;25(2):235. https://doi.org/10.1359/JBMR.090723.
Article CAS PubMed Google Scholar
Wei Wang J, Li W, Wen Xu S, Yang DS, Feng Zhao G. Sequential changes in biomechanical competence of femoral neck and marrow cavity of proximal femur in ovariectomized rats. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2005;34(5). https://doi.org/10.3785/J.ISSN.1008-9292.2005.05.011.
Zhang X, et al. Promoting osteointegration effect of Cu-alloyed titanium in ovariectomized rats. Regen Biomater. 2022. https://doi.org/10.1093/RB/RBAC011.
Article PubMed PubMed Central Google Scholar
Mosekilde L, Danielsen CC, Knudsen UB. The effect of aging and ovariectomy on the vertebral bone mass and biomechanical properties of mature rats. Bone. 1993;14(1):1–6. https://doi.org/10.1016/8756-3282(93)90248-9.
留言 (0)