1. Sung, H, Ferlay, J, Siegel, RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249.
Google Scholar |
Crossref |
Medline2. Siegel, RL, Miller, KD, Goding Sauer, A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145-164.
Google Scholar |
Crossref |
Medline3. Applequist, SE, Selg, M, Raman, C, Jäck, HM. Cloning and characterization of HUPF1, a human homolog of the Saccharomyces cerevisiae nonsense mrna-reducing UPF1 protein. Nucleic Acids Res. 1997;25(4):814-821.
Google Scholar |
Crossref |
Medline4. Brogna, S, mcleod, T, Petric, M. The meaning of NMD: translate or perish. Trends Genet. 2016;32(7):395-407.
Google Scholar |
Crossref |
Medline5. Holbrook, JA, Neu-Yilik, G, Hentze, MW, Kulozik, AE. Nonsense-mediated decay approaches the clinic. Nat Genet. 2004;36(8):801-808.
Google Scholar |
Crossref |
Medline6. Nicholson, P, Yepiskoposyan, H, Metze, S, Zamudio Orozco, R, Kleinschmidt, N, Muhlemann, O. Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors. Cell Mol Life Sci. 2010;67(5):677-700.
Google Scholar |
Crossref |
Medline |
ISI7. Feng, Q, Jagannathan, S, Bradley, RK. The RNA surveillance factor UPF1 represses myogenesis via its E3 ubiquitin ligase activity. Mol Cell. 2017;67(2):239-251.e6.
Google Scholar |
Crossref |
Medline8. Medghalchi, SM, Frischmeyer, PA, Mendell, JT, Kelly, AG, Lawler, AM, Dietz, HC. Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability. Hum Mol Genet. 2001;10(2):99-105.
Google Scholar |
Crossref |
Medline9. Azzalin, CM, Lingner, J. The human RNA surveillance factor UPF1 is required for S phase progression and genome stability. Curr Biol. 2006;16(4):433-439.
Google Scholar |
Crossref |
Medline10. Li, L, Geng, Y, Feng, R, et al. The human RNA surveillance factor UPF1 modulates gastric cancer progression by targeting long non-coding RNA MALAT1. Cell Physiol Biochem. 2017;42(6):2194-2206.
Google Scholar |
Crossref |
Medline11. Zou, H, Li, Y, Liu, X, Wang, X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem. 1999;274(17):11549-11556.
Google Scholar |
Crossref |
Medline12. Fennell, DA . Caspase regulation in Non–small cell lung cancer and its potential for therapeutic exploitation. Clin Cancer Res. 2005;11(6):2097-2105.
Google Scholar |
Crossref |
Medline13. Riedl, SJ, Salvesen, GS. The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol. 2007;8(5):405-413.
Google Scholar |
Crossref |
Medline14. Karagiannis, TC, El-Osta, A. Double-strand breaks: signaling pathways and repair mechanisms. Cell Mol Life Sci. 2004;61(17):2137-2147.
Google Scholar |
Medline15. Paull, TT, Rogakou, EP, Yamazaki, V, Kirchgessner, CU, Gellert, M, Bonner, WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol. 2000;10(15):886-895.
Google Scholar |
Crossref |
Medline16. Thiery, JP, Acloque, H, Huang, RY, Nieto, MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871-890.
Google Scholar |
Crossref |
Medline |
ISI17. Tennen, RI, Haye, JE, Wijayatilake, HD, Arlow, T, Ponzio, D, Gammie, AE. Cell-cycle and DNA damage regulation of the DNA mismatch repair protein Msh2 occurs at the transcriptional and post-transcriptional level. DNA Repair (Amst). 2013;12(2):97-109.
Google Scholar |
Crossref |
Medline18. Niwa, Y, Yamada, S, Koike, M, et al. Epithelial to mesenchymal transition correlates with tumor budding and predicts prognosis in esophageal squamous cell carcinoma. J Surg Oncol. 2014;110(6):764-769.
Google Scholar |
Crossref |
Medline19. Zlobec, I, Lugli, A. Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: tumor budding as oncotarget. Oncotarget. 2010;1(7):651-661.
Google Scholar |
Crossref |
Medline20. Banias, L, Jung, I, Bara, T, et al. Immunohistochemical-based molecular subtyping of colorectal carcinoma using maspin and markers of epithelial-mesenchymal transition. Oncol Lett. 2020;19(2):1487-1495.
Google Scholar |
Medline21. Banias, L, Gurzu, S, Kovacs, Z, Bara, T, Bara, T, Jung, I. Nuclear maspin expression: a biomarker for budding assessment in colorectal cancer specimens. Pathol Res Pract. 2017;213(9):1227-1230.
Google Scholar |
Crossref |
Medline22. Karousis, ED, Nasif, S, Muhlemann, O. Nonsense-mediated mRNA decay: novel mechanistic insights and biological impact. Wiley Interdiscip Rev RNA. 2016;7(5):661-682.
Google Scholar |
Crossref |
Medline23. Avery, P, Vicente-Crespo, M, Francis, D, Nashchekina, O, Alonso, CR, Palacios, IM. Drosophila Upf1 and Upf2 loss of function inhibits cell growth and causes animal death in a Upf3-independent manner. RNA. 2011;17(4):624-638.
Google Scholar |
Crossref |
Medline24. Azzalin, CM, Lingner, J. The double life of UPF1 in RNA and DNA stability pathways. Cell Cycle. 2006;5(14):1496-1498.
Google Scholar |
Crossref |
Medline25. Chang, L, Yuan, Y, Li, C, et al. Upregulation of SNHG6 regulates ZEB1 expression by competitively binding mir-101-3p and interacting with UPF1 in hepatocellular carcinoma. Cancer Lett. 2016;383(2):183-194.
Google Scholar |
Crossref |
Medline26. Shao, L, He, Q, Liu, Y, et al. UPF1 Regulates the malignant biological behaviors of glioblastoma cells via enhancing the stability of linc-00313. Cell Death Dis. 2019;10(9):629.
Google Scholar |
Crossref |
Medline27. Denning, G, Jamieson, L, Maquat, LE, Thompson, EA, Fields, AP. Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem. 2001;276(25):22709-22714.
Google Scholar |
Crossref |
Medline28. Kashima, I, Yamashita, A, Izumi, N, et al. Binding of a novel SMG-1-Upf1-erf1-erf3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev. 2006;20(3):355-367.
Google Scholar |
Crossref |
Medline
留言 (0)