1. Guo, Y, Meng, X, Ma, J, et al. Human papillomavirus 16 E6 contributes HIF-1α induced Warburg effect by attenuating the VHL-HIF-1α interaction. Int J Mol Sci. 2014;15(5):7974‐7986.
Google Scholar |
Crossref |
Medline2. Wu, MZ, Li, WN, Cha, N, et al. Diagnostic utility of HPV16 E6 mRNA or E7 mRNA quantitative expression for cervical cells of patients with dysplasia and carcinoma. Cell Transplant. 2018;27(9):1401‐1406.
Google Scholar |
SAGE Journals |
ISI3. Bouvard, V, Baan, R, Straif, K, et al. WHO International agency for research on cancer monograph working group. A review of human carcinogens–part B: biological agents. Lancet Oncol. 2009;10(4):321‐322.
Google Scholar |
Crossref |
Medline |
ISI4. Menon, S, van den Broeck, D, Rossi, R, Ogbe, E, Mabeya, H. Multiple HPV infections in female sex workers in western Kenya: implications for prophylactic vaccines within this sub population. Infect Agent Cancer. 2017;12:2.
Google Scholar |
Crossref |
Medline5. Narisawa-Saito, M, Kiyono, T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci. 2007;98(10):1505‐1511.
Google Scholar |
Crossref |
Medline |
ISI6. Wu, MZ, Wang, S, Zheng, M, et al. The diagnostic utility of p16 immunostaining in differentiating cancer and HSIL from LSIL and benign in cervical cells. Cell Transplant. 2019;28(2):195‐200.
Google Scholar |
SAGE Journals |
ISI7. Silva, EM, Mariano, VS, Pastrez, PRA, et al. Human papillomavirus is not associated to non-small cell lung cancer; data from a prospective cross-sectional study. Infect Agent Cancer. 2019;14:18.
Google Scholar |
Crossref |
Medline8. Colombara, DV, Manhart, LE, Carter, JJ, et al. Prior human polyomavirus and papillomavirus infection and incident lung cancer: a nested case-control study. Cancer Causes Control. 2015;26(12):1835‐1844.
Google Scholar |
Crossref |
Medline9. Yu, Y, Liu, X, Yang, Y, et al. Effect of FHIT loss and p53 mutation on HPV-infected lung carcinoma development. Oncol Lett. 2015;10(1):392‐398.
Google Scholar |
Crossref |
Medline10. Iwamasa, T, Miyagi, J, Tsuhako, K, et al. Prognostic implication of human papillomavirus infection in squamous cell carcinoma of the lung. Pathol Res Pract. 2000;196(4):209‐218.
Google Scholar |
Crossref |
Medline11. Gui, S, Xie, X, O’Neill, WQ, et al. P53 functional states are associated with distinct aldehyde dehydrogenase transcriptomic signatures. Sci Rep. 2020;10(1):1097.
Google Scholar |
Crossref |
Medline12. Rajavel, T, Banu Priya, G, Suryanarayanan, V, Singh, SK, Pandima Devi, K. Daucosterol disturbs redox homeostasis and elicits oxidative-stress mediated apoptosis in A549 cells via targeting thioredoxin reductase by a p53 dependent mechanism. Eur J Pharmacol. 2019;855:112‐123.
Google Scholar |
Crossref |
Medline13. Tang, X, Zhang, Q, Nishitani, J, Brown, J, Shi, S, Le, AD. Overexpression of human papillomavirus type 16 oncoproteins enhances hypoxia-inducible factor 1 alpha protein accumulation and vascular endothelial growth factor expression in human cervical carcinoma cells. Clin Cancer Res. 2007;13(9):2568‐2576.
Google Scholar |
Crossref |
Medline14. Zhang, EY, Tang, XD. Human papillomavirus type 16/18 oncoproteins: potential therapeutic targets in non-smoking associated lung cancer. Asian Pac J Cancer Prev. 2012;13(11):5363‐5369.
Google Scholar |
Crossref |
Medline15. Fan, R, Hou, WJ, Zhao, YJ, et al. Overexpression of HPV16 E6/E7 mediated HIF-1α upregulation of GLUT1 expression in lung cancer cells. Tumour Biol. 2016;37(4):4655‐4663.
Google Scholar |
Crossref |
Medline16. Guo, NN, Sun, XJ, Xie, YK, Yang, GW, Kang, CJ. Cloning and functional characterization of thioredoxin gene from kuruma shrimp marsupenaeus japonicus. Fish Shellfish Immunol. 2019;86:429‐435.
Google Scholar |
Crossref |
Medline17. Fath, MA, Ahmad, IM, Smith, CJ, Spence, J, Spitz, DR. Enhancement of carboplatin-mediated lung cancer cell killing by simultaneous disruption of glutathione and thioredoxin metabolism. Clin Cancer Res. 2011;17(19):6206‐6217.
Google Scholar |
Crossref |
Medline18. Zheng, X, Xu, W, Sun, R, Yin, H, Dong, C, Zeng, H. Synergism between thioredoxin reductase inhibitor ethaselen and sodium selenite in inhibiting proliferation and inducing death of human non-small cell lung cancer cells. Chem Biol Interact. 2017;275:74‐85.
Google Scholar |
Crossref |
Medline19. Ceccarelli, J, Delfino, L, Zappia, E, et al. The redox state of the lung cancer microenvironment depends on the levels of thioredoxin expressed by tumor cells and affects tumor progression and response to prooxidants. Int J Cancer. 2008;123(8):1770‐1778.
Google Scholar |
Crossref |
Medline20. Duan, D, Wang, Y, Pan, D, et al. Targeting thioredoxin reductase by deoxyelephantopin from Elephantopus scaber triggers cancer cell apoptosis. Arch Biochem Biophys. 2021 Oct 30;711:109028. doi:
10. 1016/j. abb. 2021. Epub 2021 Sep 10.
Google Scholar |
Crossref |
Medline21. Fan, J, Yu, H, Lv, Y, Yin, L. Diagnostic and prognostic value of serum thioredoxin and DJ-1 in non-small cell lung carcinoma patients. Tumour Biol. 2016;37(2):1949‐1958.
Google Scholar |
Crossref |
Medline22. Kelleher, ZT, Sha, Y, Foster, MW, Foster, WM, Forrester, MT, Marshall, HE. Thioredoxin-mediated denitrosylation regulates cytokine-induced nuclear factor κB (NF-κB) activation. J Biol Chem. 2014;289(5):3066‐3072.
Google Scholar |
Crossref |
Medline23. Zhao, H, Sun, J, Shao, J, et al. Glucose transporter 1 promotes the malignant phenotype of non-small cell lung cancer through integrin β1/Src/FAK signaling. J Cancer. 2019;10(20):4989‐4997.
Google Scholar |
Crossref |
Medline24. Gu, NJ, Wu, MZ, He, L, et al. HPV 16 E6/E7 up-regulate the expression of both HIF-1α and GLUT1 by inhibition of RRAD and activation of NF-κB in lung cancer cells. J Cancer. 2019;10(27):6903‐6909.
Google Scholar |
Crossref |
Medline25. Higashi, K, Ueda, Y, Sakurai, A, et al. Correlation of glut-1 glucose transporter expression with [(18)F]FDG uptake in non-small cell lung cancer. Eur J Nucl Med. 2000;27(12):1778–1785.
Google Scholar |
Crossref26. Gonzalez-Menendez, P, Hevia, D, Mayo, JC, Sainz, RM. The dark side of glucose transporters in prostate cancer: are they a new feature to characterize carcinomas? Int J Cancer. 2018;142(12):2414‐2424.
Google Scholar |
Crossref |
Medline27. Long, D, Wu, H, Tsang, AW, et al. The oxidative state of cysteine thiol 144 regulates the SIRT6 glucose homeostat. Sci Rep. 2017;7(1):11005.
Google Scholar |
Crossref |
Medline28. Pezzuto, A, D’Ascanio, M, Ricci, A, Pagliuca, A, Carico, E. Expression and role of p16 and GLUT1 in malignant diseases and lung cancer: a review. Thorac Cancer. 2020;11(11):3060‐3070.
Google Scholar |
Crossref |
Medline29. Pezzuto, A, Cappuzzo, F, D’Arcangelo, M, et al. Prognostic value of p16 protein in patients With surgically treated non-small cell lung cancer; relationship with Ki-67 and PD-L1. Anticancer Res. 2020;40(2):983‐990.
Google Scholar |
Crossref |
Medline30. Warburg, O . On the origin of cancer cells. Science. 1956;123(3191):309‐314.
Google Scholar |
Crossref |
Medline |
ISI31. Pezzuto, A, Carico, E. Role of HIF-1 in cancer progression: novel insights. A review. Curr Mol Med. 2018;18(6):343‐351.
Google Scholar |
Crossref |
Medline32. Zhao, HY, Yang, JH, Wang, X, Sun, J, Wang, EH, Wu, GP. Analysis of human papillomavirus 16 E6/E7 and L1 in the bronchial brushing cells of patients with squamous cell carcinoma of the lungs. Int J Clin Exp Pathol. 2018;11(8):4124‐4129.
Google Scholar |
Medline33. Tang, JY, Li, DY, He, L, Qiu, XS, Wang, EH, Wu, GP. HPV 16 E6/E7 promote the glucose uptake of GLUT1 in lung cancer through downregulation of TXNIP due to inhibition of PTEN phosphorylation. Front Oncol. 2020;10:559543.
Google Scholar |
Crossref |
Medline34. Azoitei, N, Becher, A, Steinestel, K, et al. PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Mol Cancer. 2016;15:3.
Google Scholar |
Crossref |
Medline35. Zheng, B, Geng, L, Zeng, L, Liu, F, Huang, Q. AKT2 Contributes to increase ovarian cancer cell migration and invasion through the AKT2-PKM2-STAT3/NF-κB axis. Cell Signal. 2018;45:122‐131.
Google Scholar |
Crossref |
Medline36. Yao, A, Xiang, Y, Si, YR, et al. PKM2 promotes glucose metabolism through A let-7a-5p/Stat3/hnRNP-A1 regulatory feedback loop in breast cancer cells. J Cell Biochem. 2019;120(4):6542‐6554.
Google Scholar |
Crossref |
Medline37. Niu, XY, Peng, ZL, Duan, WQ, Wang, H, Wang, P. Inhibition of HPV 16 E6 oncogene expression by RNA interference in vitro and in vivo. Int J Gynecol Cancer. 2006;16(2):743‐751.
Google Scholar |
Crossref |
Medline38. Cui, X, Wang, X, Zhou, X, Jia, J, Chen, H, Zhao, W. miR-106a regulates cell proliferation and autophagy by targeting LKB1 in HPV-16-associated cervical cancer. Mol Cancer Res. 2020;18(8):1129‐1141.
Google Scholar |
Crossref |
Medline39. Shao, JS, Sun, J, Wang, S, et al. HPV16 E6/E7 upregulates HIF-2α and VEGF by inhibiting LKB1 in lung cancer cells. Tumour Biol. 2017;39(7):1010428317717137.
Google Scholar |
SAGE Journals |
ISI
留言 (0)