1.
Al-Samkari, H, Van Beers, EJ, Kuo, KHM, et al. The variable manifestations of disease in pyruvate kinase deficiency and their management. Haematologica 2020; 105: 2229–2239.
Google Scholar |
Crossref |
Medline2.
Matte, A, Federti, E, Kung, C, et al. The pyruvate kinase activator mitapivat reduces hemolysis and improves anemia in a beta-thalassemia mouse model. J Clin Invest 2021; 131: e144206.
Google Scholar |
Crossref |
Medline3.
Rab, MAE, Bos, J, van Oirschot, BA, et al. Decreased activity and stability of pyruvate kinase in sickle cell disease: a novel target for mitapivat therapy. Blood 2021; 137: 2997–3001.
Google Scholar |
Crossref |
Medline4.
Rab, MAE, Van Oirschot, BA, Kosinski, PA, et al. AG-348 (mitapivat), an allosteric activator of red blood cell pyruvate kinase, increases enzymatic activity, protein stability, and ATP levels over a broad range of PKLR genotypes. Haematologica 2021; 106: 238–249.
Google Scholar |
Crossref |
Medline5.
Jiang, J, Walsh, MJ, Brimacombe, KR, et al. ML265: a potent PKM2 activator induces tetramerization and reduces tumor formation and size in a mouse xenograft model. Probe Reports from the NIH Molecular Libraries Program, Bethesda, MD, 2010.
Google Scholar6.
Kung, C, Hixon, J, Choe, S, et al. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem Biol 2012; 19: 1187–1198.
Google Scholar |
Crossref |
Medline7.
Kung, C, Hixon, J, Kosinski, PA, et al. AG-348 enhances pyruvate kinase activity in red blood cells from patients with pyruvate kinase deficiency. Blood 2017; 130: 1347–1356.
Google Scholar |
Crossref |
Medline8.
Chen, Y, Kosinski, P, Histen, G, et al. Preclinical pharmacokinetic/pharmacodynamic relationships for AG-348, an investigational small-molecule activator of pyruvate kinase. Haematologica 2015; 100: 298–299.
Google Scholar9.
Rab, MAE, van Oirschot, BA, van Straaten, S, et al. Decreased activity and stability of pyruvate kinase in hereditary hemolytic anemia: a potential target for therapy by AG-348 (Mitapivat), an allosteric activator of red blood cell pyruvate kinase. Blood 2019; 134: 3506.
Google Scholar |
Crossref10.
Matte, A, Anand, W, Federti, E, et al. The pyruvate kinase activator mitapivat ameliorates anemia and prevents iron overload in a mouse model of hereditary spherocytosis (abstract). Blood 2020; 136: 29.
Google Scholar |
Crossref11.
Yang, H, Merica, E, Chen, Y, et al. Phase 1 single- and multiple-ascending-dose randomized studies of the safety, pharmacokinetics, and pharmacodynamics of AG-348, a first-in-class allosteric activator of pyruvate kinase R, in healthy volunteers. Clin Pharmacol Drug Dev 2019; 8(2): 246–259.
Google Scholar |
Crossref |
Medline12.
Beutler, E, Gelbart, T. Estimating the prevalence of pyruvate kinase deficiency from the gene frequency in the general white population. Blood 2000; 95: 3585–3588.
Google Scholar |
Crossref |
Medline13.
Secrest, MH, Storm, M, Carrington, C, et al. Prevalence of pyruvate kinase deficiency: a systematic literature review. Eur J Haematol 2020; 105(2): 173–184.
Google Scholar |
Crossref |
Medline14.
Bianchi, P, Fermo, E, Lezon-Geyda, K, et al. Genotype-phenotype correlation and molecular heterogeneity in pyruvate kinase deficiency. Am J Hematol 2020; 95: 472–482.
Google Scholar |
Crossref |
Medline15.
Bianchi, P, Fermo, E. Molecular heterogeneity of pyruvate kinase deficiency. Haematologica 2020; 105: 2218–2228.
Google Scholar |
Crossref |
Medline16.
Al-Samkari, H, Addonizio, K, Glader, B, et al. The pyruvate kinase (PK) to hexokinase enzyme activity ratio and erythrocyte PK protein level in the diagnosis and phenotype of PK deficiency. Br J Haematol 2021; 192(6): 1092–1096.
Google Scholar |
Crossref |
Medline17.
Bianchi, P, Fermo, E, Glader, B, et al. Addressing the diagnostic gaps in pyruvate kinase deficiency: consensus recommendations on the diagnosis of pyruvate kinase deficiency. Am J Hematol 2019; 94(1): 149–161.
Google Scholar |
Crossref |
Medline18.
Al-Samkari, H, van Beers, EJ, Morton, DH, et al. Characterization of the severe phenotype of pyruvate kinase deficiency. Am J Hematol 2020; 95: E281–E285.
Google Scholar |
Crossref19.
Boscoe, AN, Yan, Y, Hedgeman, E, et al. Comorbidities and complications in adults with pyruvate kinase deficiency. Eur J Haematol 2021; 106(4): 484–492.
Google Scholar |
Crossref |
Medline20.
Al-Samkari, H, van Beers, EJ, Morton, DH, et al. Health-related quality of life and fatigue in children and adults with pyruvate kinase deficiency. Blood Adv 2021. Epub ahead of print 1 September 2021. DOI:
10.1182/bloodadvances.2021004675. Google Scholar |
Crossref21.
Grace, RF, Bianchi, P, van Beers, EJ, et al. Clinical spectrum of pyruvate kinase deficiency: data from the Pyruvate Kinase Deficiency Natural History Study. Blood 2018; 131: 2183–2192.
Google Scholar |
Crossref |
Medline22.
van Beers, EJ, van Straaten, S, Morton, DH, et al. Prevalence and management of iron overload in pyruvate kinase deficiency: report from the Pyruvate Kinase Deficiency Natural History Study. Haematologica 2019; 104(2): e51–e53.
Google Scholar |
Crossref |
Medline23.
Grace, RF, Mark Layton, D, Barcellini, W. How we manage patients with pyruvate kinase deficiency. Br J Haematol 2019; 184(5): 721–734.
Google Scholar |
Crossref |
Medline24.
van Straaten, S, Bierings, M, Bianchi, P, et al. Worldwide study of hematopoietic allogeneic stem cell transplantation in pyruvate kinase deficiency. Haematologica 2018; 103(2): e82–e86.
Google Scholar |
Crossref |
Medline25.
Grace, RF, Rose, C, Layton, DM, et al. Safety and efficacy of mitapivat in pyruvate kinase deficiency. N Engl J Med 2019; 381: 933–944.
Google Scholar |
Crossref |
Medline26.
Al-Samkari, H, Galacteros, F, Glenthoj, A, et al. ACTIVATE: a phase 3, randomized, multicenter, double-blind, placebo-controlled study of mitapivat in adults with pyruvate kinase deficiency who are not regularly transfused (abstract). HemaSphere 2021; 5: S270.
Google Scholar27.
Glenthoj, A, van Beers, E, Al-Samkari, H, et al. ACTIVATE-T: a phase 3, open-label, multicenter study of mitapivat in adults with pyruvate kinase deficiency who are regularly transfused (abstract). HemaSphere 2021; 5: S271.
Google Scholar28.
Kuo, KH, Layton, DM, Lal, A, et al. Results from a phase 2, open-label, multicenter study of the oral pyruvate kinase inhibitor mitapivat in adults with non-transfusion-dependent alpha- or beta-thalassemia (abstract). HemaSphere 2021; 5: S267.
Google Scholar29.
Xu, JZ, Conrey, A, Frey, I, et al. Mitapivat (AG-348) demonstrates safety, tolerability, and improvements in anemia, hemolysis, oxygen affinity, and hemoglobin S polymerization kinetics in adults with sickle cell disease: A phase 1 dose escalation study (abstract). Blood 2021; 138: 10.
Google Scholar |
Crossref30.
Kuo, KH, Layton, DM, Al-Samkari, H, et al. ENERGIZE and ENERGIZE-T: two phase 3, randomized, double-blind, placebo-controlled studies of mitapivat in adults with non-transfusion-dependent or transfusion-dependent alpha- or beta-thalassemia. HemaSphere 2021; 5: PB1805.
Google Scholar31.
van Dijk, M, Rab, MAE, Rijneveld, AW, et al. Safety and efficacy of mitapivat (AG-348), an oral activator of pyruvate kinase R, in subjects with sickle cell disease: A phase 2, open-label study (ESTIMATE) (abstract). Blood 2021; 138: 2047.
Google Scholar |
Crossref32.
Al-Samkari, H, Grace, RF, Glenthoj, A, et al. Early-onset osteopenia and osteoporosis in patients with pyruvate kinase deficiency (abstract). HemaSphere 2021; 5: EP692.
Google Scholar33.
Al-Samkari, H, van Beers, E, Barcellini, W, et al. Bone mineral density is stable in adults with pyruvate kinase deficiency receiving long-term treatment with mitapivat (abstract). HemaSphere 2021; 5: EP696.
Google Scholar34.
Salek, S, Boscoe, AN, Piantedosi, S, et al. Development of the pyruvate kinase deficiency diary and pyruvate kinase deficiency impact assessment: disease-specific assessments. Eur J Haematol 2020; 104(5): 427–434.
Google Scholar |
Crossref |
Medline
留言 (0)