Daratumumab plus CyBorD for patients with newly diagnosed light chain (AL) amyloidosis

1. Quock, TP, Yan, T, Chang, E, et al. Epidemiology of AL amyloidosis: a real-world study using US claims data. Blood Adv 2018; 2: 1046–1053.
Google Scholar | Crossref | Medline2. Muchtar, E, Gertz, MA, Kumar, SK, et al. Improved outcomes for newly diagnosed AL amyloidosis between 2000 and 2014: cracking the glass ceiling of early death. Blood 2017; 129: 2111–2119.
Google Scholar | Crossref | Medline3. Kumar, S, Dispenzieri, A, Lacy, MQ, et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol 2012; 30: 989–995.
Google Scholar | Crossref | Medline | ISI4. Kaufman, GP, Dispenzieri, A, Gertz, MA, et al. Kinetics of organ response and survival following normalization of the serum free light chain ratio in AL amyloidosis. Am J Hematol 2015; 90: 181–186.
Google Scholar | Crossref | Medline5. Palladini, G, Dispenzieri, A, Gertz, MA, et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol 2012; 30: 4541–4549.
Google Scholar | Crossref | Medline | ISI6. Palladini, G, Hegenbart, U, Milani, P, et al. A staging system for renal outcome and early markers of renal response to chemotherapy in AL amyloidosis. Blood 2014; 124: 2325–2332.
Google Scholar | Crossref | Medline7. Palladini, G, Milani, P, Foli, A, et al. Oral melphalan and dexamethasone grants extended survival with minimal toxicity in AL amyloidosis: long-term results of a risk-adapted approach. Haematologica 2014; 99: 743–750.
Google Scholar | Crossref | Medline8. Cibeira, MT, Sanchorawala, V, Seldin, DC, et al. Outcome of AL amyloidosis after high-dose melphalan and autologous stem cell transplantation: long-term results in a series of 421 patients. Blood 2011; 118: 4346–4352.
Google Scholar | Crossref | Medline9. D’Souza, A, Dispenzieri, A, Wirk, B, et al. Improved outcomes after autologous hematopoietic cell transplantation for light chain amyloidosis: a Center for International Blood and Marrow Transplant Research Study. J Clin Oncol 2015; 33: 3741–3749.
Google Scholar | Crossref | Medline10. Oliva, L, Orfanelli, U, Resnati, M, et al. The amyloidogenic light chain is a stressor that sensitizes plasma cells to proteasome inhibitor toxicity. Blood 2017; 129: 2132–2142.
Google Scholar | Crossref | Medline11. Reece, DE, Hegenbart, U, Sanchorawala, V, et al. Efficacy and safety of once-weekly and twice-weekly bortezomib in patients with relapsed systemic AL amyloidosis: results of a phase 1/2 study. Blood 2011; 118: 865–873.
Google Scholar | Crossref | Medline12. Kastritis, E, Wechalekar, AD, Dimopoulos, MA, et al. Bortezomib with or without dexamethasone in primary systemic (light chain) amyloidosis. J Clin Oncol 2010; 28: 1031–1037.
Google Scholar | Crossref | Medline | ISI13. Kastritis, E, Leleu, X, Arnulf, B, et al. A randomized phase III trial of melphalan and dexamethasone (MDex) versus bortezomib, melphalan and dexamethasone (BMDex) for untreated patients with AL amyloidosis. Washington, DC: American Society of Hematology, 2016.
Google Scholar | Crossref14. Palladini, G, Sachchithanantham, S, Milani, P, et al. A European collaborative study of cyclophosphamide, bortezomib, and dexamethasone in upfront treatment of systemic AL amyloidosis. Blood 2015; 126: 612–615.
Google Scholar | Crossref | Medline | ISI15. Muchtar, E, Dispenzieri, A, Kumar, SK, et al. Interphase fluorescence in situ hybridization in untreated AL amyloidosis has an independent prognostic impact by abnormality type and treatment category. Leukemia 2017; 31: 1562–1569.
Google Scholar | Crossref | Medline16. Bochtler, T, Hegenbart, U, Kunz, C, et al. Translocation t(11;14) is associated with adverse outcome in patients with newly diagnosed AL amyloidosis when treated with bortezomib-based regimens. J Clin Oncol 2015; 33: 1371–1378.
Google Scholar | Crossref | Medline17. Matsuda, M, Gono, T, Shimojima, Y, et al. Phenotypic analysis of plasma cells in bone marrow using flow cytometry in AL amyloidosis. Amyloid 2003; 10: 110–116.
Google Scholar | Crossref | Medline18. Seckinger, A, Hillengass, J, Emde, M, et al. CD38 as immunotherapeutic target in light chain amyloidosis and multiple myeloma – association with molecular entities, risk, survival, and mechanisms of upfront resistance. Front Immunol 2018; 9: 1676.
Google Scholar | Crossref | Medline19. Deaglio, S, Morra, M, Mallone, R, et al. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J Immunol 1998; 160: 395–402.
Google Scholar | Medline | ISI20. Ferrero, E, Malavasi, F. Human CD38, a leukocyte receptor and ectoenzyme, is a member of a novel eukaryotic gene family of nicotinamide adenine dinucleotide+-converting enzymes: extensive structural homology with the genes for murine bone marrow stromal cell antigen 1 and aplysian ADP-ribosyl cyclase. J Immunol 1997; 159: 3858–3865.
Google Scholar | Medline21. Flores-Borja, F, Bosma, A, Ng, D, et al. CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med 2013; 5: 173ra123.
Google Scholar | Crossref | Medline22. Krejcik, J, Casneuf, T, Nijhof, IS, et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 2016; 128: 384–394.
Google Scholar | Crossref | Medline | ISI23. Zambello, R, Barilà, G, Manni, S, et al. NK cells and CD38: implication for (immuno)therapy in plasma cell dyscrasias. Cells 2020; 9: 768.
Google Scholar | Crossref24. Overdijk, MB, Jansen, JH, Nederend, M, et al. The therapeutic CD38 monoclonal antibody daratumumab induces programmed cell death via Fcγ receptor-mediated cross-linking. J Immunol 2016; 197: 807–813.
Google Scholar | Crossref | Medline25. van, de, Donk, N, Richardson, PG, Malavasi, F. CD38 antibodies in multiple myeloma: back to the future. Blood 2018; 131: 13–29.
Google Scholar | Crossref | Medline26. de Weers, M, Tai, Y-T, van der Veer, MS, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol 2011; 186: 1840–1848.
Google Scholar | Crossref | Medline | ISI27. Overdijk, MB, Verploegen, S, Bögels, M, et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs 2015; 7: 311–321.
Google Scholar | Crossref | Medline | ISI28. Adams, HC, Stevenaert, F, Krejcik, J, et al. High-parameter mass cytometry evaluation of relapsed/refractory multiple myeloma patients treated with daratumumab demonstrates immune modulation as a novel mechanism of action. Cytometry A 2019; 95: 279–289.
Google Scholar | Crossref | Medline29. Roussel, M, Merlini, G, Chevret, S, et al. A prospective phase 2 trial of daratumumab in patients with previously treated systemic light-chain amyloidosis. Blood 2020; 135: 1531–1540.
Google Scholar | Crossref | Medline30. Sanchorawala, V, Sarosiek, S, Schulman, A, et al. Safety, tolerability, and response rates of daratumumab in relapsed AL amyloidosis: results of a phase 2 study. Blood 2020; 135: 1541–1547.
Google Scholar | Crossref | Medline31. Chung, A, Kaufman, GP, Sidana, S, et al. Organ responses with daratumumab therapy in previously treated AL amyloidosis. Blood Adv 2020; 4: 458–466.
Google Scholar | Crossref | Medline32. Abeykoon, JP, Zanwar, S, Dispenzieri, A, et al. Daratumumab-based therapy in patients with heavily-pretreated AL amyloidosis. Leukemia 2019; 33: 531–536.
Google Scholar | Crossref | Medline33. Hossein Taghizadeh, M, Thomas, R, Franz, D, et al. Daratumumab – a safe first-line treatment of cardiac AL amyloidosis in heavily compromised patients. In: The XVIth international symposium on amyloidosis, Kumamoto, Japan, .
Google Scholar34. Palladini, G, Kastritis, E, Maurer, MS, et al. Daratumumab plus CyBorD for patients with newly diagnosed AL amyloidosis: safety run-in results of ANDROMEDA. Blood 2020; 136: 71–80.
Google Scholar | Crossref | Medline35. Kastritis, E, Palladini, G, Minnema, MC, et al. Daratumumab-based treatment for immunoglobulin light-chain amyloidosis. N Engl J Med 2021; 385: 46–58.
Google Scholar | Crossref | Medline36. van, de, Donk, NW, Otten, HG, El Haddad, O, et al. Interference of daratumumab in monitoring multiple myeloma patients using serum immunofixation electrophoresis can be abrogated using the daratumumab IFE reflex assay (DIRA). Clin Chem Lab Med 2016; 54: 1105–1109.
Google Scholar | Medline37. Kastritis, E, Kostopoulos, IV, Theodorakakou, F, et al. Next generation flow cytometry for MRD detection in patients with AL amyloidosis. Amyloid 2021; 28: 19–23.
Google Scholar | Crossref | Medline38. Kastritis, E, Sanchorawala, V, Merlini, G, et al. Subcutaneous daratumumab + bortezomib, cyclophosphamide, and dexamethasone (VCd) in patients with newly diagnosed light chain (AL) amyloidosis: updated results from the phase 3 ANDROMEDA study. J Clin Oncol 2021; 39: 8003–8003.
Google Scholar | Crossref39. Kimmich, CR, Terzer, T, Benner, A, et al. Daratumumab for systemic AL amyloidosis: prognostic factors and adverse outcome with nephrotic-range albuminuria. Blood 2020; 135: 1517–1530.
Google Scholar | Crossref | Medline40. Rocchi, S, Tacchetti, P, Pantani, L, et al. Safety and efficacy of daratumumab in dialysis-dependent renal failure secondary to multiple myeloma. Haematologica 2018; 103: e277–e278.
Google Scholar | Crossref | Medline41. Chanan-Khan, AA, Kaufman, JL, Mehta, J, et al. Activity and safety of bortezomib in multiple myeloma patients with advanced renal failure: a multicenter retrospective study. Blood 2007; 109: 2604–2606.
Google Scholar | Crossref | Medline42. Jacobs, R, Langer-Jacobus, T, Duong, M, et al. Detection and quantification of rituximab in the human urine. J Immunol Methods 2017; 451: 118–121.
Google Scholar | Crossref | Medline43. Bal, S, Sigler, A, Chan, A, et al. First description of B cell maturation antigen expression in light chain amyloidosis. Washington, DC: American Society of Hematology, 2019.
Google Scholar | Crossref44. Yip, PL, Lau, JSM, Lam, CP. Venetoclax monotherapy induced rapid and sustained response in a frail patient with refractory AL amyloidosis: less is more? Int J Hematol 2020; 112: 234–237.
Google Scholar | Crossref | Medline45. Leung, N, Thomé, SD, Dispenzieri, A. Venetoclax induced a complete response in a patient with immunoglobulin light chain amyloidosis plateaued on cyclophosphamide, bortezomib and dexamethasone. Haematologica 2018; 103: e135–e137.
Google Scholar | Crossref | Medline46. Edwards, CV, Gould, J, Langer, AL, et al. Interim analysis of the phase 1a/b study of chimeric fibril-reactive monoclonal antibody 11-1F4 in patients with AL amyloidosis. Amyloid 2017; 24(Suppl. 1): 58–59.
Google Scholar | Crossref | Medline47. Khouri, J, Anwer, F, Samaras, CJ, et al. Safety, tolerability and efficacy of Cael-101 in AL amyloidosis patients treated on a phase 2, open-label, dose selection study to evaluate the safety and tolerability of Cael-101 in patients with AL amyloidosis. Blood 2020; 136: 21.
Google Scholar | Crossref48. Wechalekar, AD, Schonland, SO, Kastritis, E, et al. A European collaborative study of treatment outcomes in 346 patients with cardiac stage III AL amyloidosi

留言 (0)

沒有登入
gif