Is 6-Shogaol an Effective Phytochemical for Patients With Lower-risk Myelodysplastic Syndrome? A Narrative Review

1. Gangat, N, Patnaik, MM, Tefferi, A. Myelodysplastic syndromes: contemporary review and how we treat. Am J Hematol. 2016;91:76-89. doi:10.1002/ajh.24253
Google Scholar | Crossref | Medline | ISI2. Steensma, DP, Heptinstall, KV, Johnson, VM, et al. Common troublesome symptoms and their impact on quality of life in patients with myelodysplastic syndromes (MDS): results of a large internet-based survey. Leuk Res. 2008;32:691-698. doi:10.1016/j.leukres.2007.10.015
Google Scholar | Crossref | Medline3. Greenberg, PL, Tuechler, H, Schanz, J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454-2465. doi:10.1182/blood-2012-03-420489
Google Scholar | Crossref | Medline | ISI4. Germing, U, Kobbe, G, Haas, R, Gattermann, N. Myelodysplastic syndromes: diagnosis, prognosis, and treatment. Dtsch Arztebl Int. 2013;110:783-790. doi:10.3238/arztebl.2013.0783
Google Scholar | Crossref | Medline5. Stauder, R, Yu, G, Koinig, KA, et al. Health-related quality of life in lower-risk MDS patients compared with age- and sex-matched reference populations: a European LeukemiaNet study. Leukemia. 2018;32:1380-1392. doi:10.1038/s41375-018-0089-x
Google Scholar | Crossref | Medline6. Yao, W, Yang, H, Ding, G. Mechanisms of qi-blood circulation and qi deficiency syndrome in view of blood and interstitial fluid circulation. J Tradit Chin Med. 2013;33:538-544. doi:10.1016/s0254-6272(13)60162-4
Google Scholar | Crossref | Medline7. Han, Y, Li, Y, Wang, Y, Gao, J, Xia, L, Hong, Y. Comparison of fresh, dried and stir-frying gingers in decoction with blood stasis syndrome in rats based on a GC-TOF/MS metabolomics approach. J Pharm Biomed Anal. 2016;129:339-349. doi:10.1016/j.jpba.2016.07.021
Google Scholar | Crossref | Medline8. Huang, Q, Feng, L, Li, H, et al. Jian-Pi-Bu-Xue-Formula alleviates cyclophosphamide-induced myelosuppression via up-regulating NRF2/HO1/NQO1 signaling. Front Pharmacol. 2020;11:1302.
Google Scholar | Crossref | Medline9. Lam, CTW, Chan, PH, Lee, PSC, et al. Chemical and biological assessment of Jujube ( Ziziphus jujuba )-containing herbal decoctions: induction of erythropoietin expression in cultures. J Chromatogr B, Anal Technol Biomed life Sci. 2016;1026:254-262. doi:10.1016/j.jchromb.2015.09.021
Google Scholar | Crossref | Medline10. Chan, SM, Nelson, EA, Leung, SS, Cheung, PC, Li, CY. Special postpartum dietary practices of Hong Kong Chinese women. Eur J Clin Nutr. 2000;54:797-802. doi:10.1038/sj.ejcn.1601095
Google Scholar | Crossref | Medline11. Zhang, H, Wang, Q, Sun, C, et al. Enhanced oral bioavailability, anti-tumor activity and hepatoprotective effect of 6-shogaol loaded in a type of novel micelles of polyethylene glycol and linoleic acid conjugate. Pharmaceutics. 2019;11:107. doi:10.3390/pharmaceutics11030107
Google Scholar | Crossref12. Golombick, T, Diamond, TH, Manoharan, A, Ramakrishna, R, Badmaev, V. Effect of the ginger derivative, 6-shogaol, on ferritin levels in patients with low to intermediate-1-risk myelodysplastic Syndrome-A small, investigative study. Clin Med Insights Blood Disord. 2017;10:1179545X17738755. doi:10.1177/1179545X17738755
Google Scholar | SAGE Journals13. Bode, AM, Dong, Z. The amazing and mighty ginger. In: Benzie, IFF, Wachtel-Galor, S eds. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd ed. CRC Press/Taylor & Francis; 2011;131-156. https://www.ncbi.nlm.nih.gov/books/NBK92775/
Google Scholar | Crossref14. Mao, Q-Q, Xu, XY, Cao, S-Y, et al. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods. 2019;8:185. doi:10.3390/foods8060185
Google Scholar | Crossref15. Fakhri, S, Patra, JK, Das, SK, Das, G, Majnooni, MB, Farzaei, MH. Ginger and heart health: from mechanisms to therapeutics. Curr Mol Pharmacol. 2020. Advance online publication. doi:10.2174/1874467213666201209105005
Google Scholar | Crossref | Medline16. Wang, J, Ke, W, Bao, R, Hu, X, Chen, F. Beneficial effects of ginger Zingiber officinale Roscoe on obesity and metabolic syndrome: a review. Ann N Y Acad Sci. 2017;1398:83-98. doi:10.1111/nyas.13375
Google Scholar | Crossref | Medline17. Mohd Sahardi, NFN, Makpol, S. Ginger (Zingiber officinale Roscoe) in the prevention of ageing and degenerative diseases: review of current evidence. Evid Based Complement Alternat Med. 2019;2019:5054395. doi:10.1155/2019/5054395
Google Scholar | Crossref | Medline18. Huang, F-Y, Deng, T, Meng, L-X, Ma, XL. Dietary ginger as a traditional therapy for blood sugar control in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Medicine. 2019;98:e15054-e15054. doi:10.1097/MD.0000000000015054
Google Scholar | Crossref19. Townsend, EA, Siviski, ME, Zhang, Y, Xu, C, Hoonjan, B, Emala, CW. Effects of ginger and its constituents on airway smooth muscle relaxation and calcium regulation. Am J Respir Cell Mol Biol. 2013;48:157-163. doi:10.1165/rcmb.2012-0231OC
Google Scholar | Crossref | Medline20. Nikkhah Bodagh, M, Maleki, I, Hekmatdoost, A. Ginger in gastrointestinal disorders: a systematic review of clinical trials. Food Sci Nutr. 2019;7:96-108. doi:10.1002/fsn3.807
Google Scholar | Crossref | Medline21. Kiyama, R. Nutritional implications of ginger: chemistry, biological activities and signaling pathways. J Nutr Biochem. 2020;86:108486. doi:10.1016/j.jnutbio.2020.108486
Google Scholar | Crossref | Medline22. Ghasemzadeh, A, Jaafar, HZE, Baghdadi, A, Tayebi-Meigooni, A. Formation of 6-, 8- and 10-shogaol in ginger through application of different drying methods: altered antioxidant and antimicrobial activity. Molecules. 2018;23:1646. doi:10.3390/molecules23071646
Google Scholar | Crossref23. Agrahari, P, Panda, P, Verma, NK, Khan, WU, Darbari, S. A brief study on zingiber officinale: a review. J Drug Discov Ther. 2015;3:20-27. https://www.jddt.in/index.php/jddt/article/view/238
Google Scholar24. Sang, S, Snook, HD, Tareq, FS, Fasina, Y. Precision research on ginger: the type of ginger matters. J Agric Food Chem. 2020;68:8517-8523. doi:10.1021/acs.jafc.0c03888
Google Scholar | Crossref | Medline25. Ho, S-C, Su, M-S. Optimized heat treatment enhances the anti-inflammatory capacity of ginger. Int J Food Prop. 2016;19:1884-1898. doi:10.1080/10942912.2015.1084633
Google Scholar | Crossref26. Li, Y, Hong, Y, Han, Y, Wang, Y, Xia, L. Chemical characterization and antioxidant activities comparison in fresh, dried, stir-frying and carbonized ginger. J Chromatogr B. 2016;1011:223-232. doi:10.1016/j.jchromb.2016.01.009
Google Scholar | Crossref | Medline27. Dugasani, S, Pichika, MR, Nadarajah, VD, Balijepalli, MK, Tandra, S, Korlakunta, JN. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol. 2010;127:515-520. doi:10.1016/j.jep.2009.10.004
Google Scholar | Crossref | Medline28. Asami, A, Shimada, T, Mizuhara, Y, et al. Pharmacokinetics of [6]-shogaol, a pungent ingredient of Zingiber officinale Roscoe (part I). J Nat Med. 2010;64:281-287. doi:10.1007/s11418-010-0404-y
Google Scholar | Crossref | Medline29. Kou, X, Wang, X, Ji, R, et al. Occurrence, biological activity and metabolism of 6-shogaol. Food Funct. 2018;9:1310-1327. doi:10.1039/c7fo01354j
Google Scholar | Crossref | Medline30. Ionescu, C, Caira, MR, eds. Pathways of biotransformation: phase II reactions. In: Ionescu, C, Caira, MR, eds. Drug Metabolism: Current Concepts. Springer Netherlands; 2005;129-170.
Google Scholar | Crossref31. Yu, Y, Zick, S, Li, X, Zou, P, Wright, B, Sun, D. Examination of the pharmacokinetics of active ingredients of ginger in humans. AAPS J. 2011;13:417-426. doi:10.1208/s12248-011-9286-5
Google Scholar | Crossref | Medline | ISI32. Anh, NH, Kim, SJ, Long, NP, et al. Ginger on human health: a comprehensive systematic review of 109 randomized controlled trials. Nutrients. 2020;12:157. doi:10.3390/nu12010157
Google Scholar | Crossref33. Hassan, SMA, Hassan, AH. Assessment of toxicological effect of shogaol in albino mice. Pak Vet J. 2018;38:377-383. doi:10.29261/pakvetj/2018.095
Google Scholar | Crossref34. Cicero, AFG, Colletti, A. Handbook of Nutraceuticals for Clinical Use. Springer; 2018.
Google Scholar | Crossref35. Kumar, S, Saxena, K, Uday, I, Singh, N, Saxena, R, Singh, UN. Anti-inflammatory action of ginger: a critical review in anemia of inflammation and its future aspects. Int J Herb Med. 2013;1:16-20.
Google Scholar36. Chrubasik, S, Pittler, MH, Roufogalis, BD. Zingiberis rhizoma: a comprehensive review on the ginger effect and efficacy profiles. Phytomedicine. 2005;12:684-701. doi:10.1016/j.phymed.2004.07.009
Google Scholar | Crossref | Medline | ISI37. Banerjee, T, Calvi, LM, Becker, MW, Liesveld, JL. Flaming and fanning: the spectrum of inflammatory influences in myelodysplastic syndromes. Blood Rev. 2019;36:57-69. doi:10.1016/j.blre.2019.04.004
Google Scholar | Crossref | Medline38. Geyer, HL, Dueck, AC, Scherber, RM, Mesa, RA. Impact of inflammation on myeloproliferative neoplasm symptom development. Mediators Inflamm. 2015;2015:1-9. doi:10.1155/2015/284706
Google Scholar | Crossref39. Sallman, DA, List, A. The central role of inflammatory signaling in the pathogenesis of myelodysplastic syndromes. Blood. 2019;133:1039-1048. doi:10.1182/blood-2018-10-844654
Google Scholar | Crossref | Medline40. Shi, X, Zheng, Y, Xu, L, Cao, C, Dong, B, Chen, X. The inflammatory cytokine profile of myelodysplastic syndromes: a meta-analysis. Medicine. 2019;98:e15844-e15844. doi:10.1097/MD.0000000000015844
Google Scholar | Crossref41. Wolach, O, Stone, R. Autoimmunity and inflammation in myelodysplastic syndromes. Acta Haematol. 2016;136:108-117. doi:10.1159/000446062
Google Scholar | Crossref | Medline42. Han, Q, Yuan, Q, Meng, X, Huo, J, Bao, Y, Xie, G. 6-Shogaol attenuates LPS-induced inflammation in BV2 microglia cells by activating PPAR-γ. Oncotarget. 2017;8:42001-42006. doi:10.18632/oncotarget.16719
Google Scholar | Crossref | Medline43. Chen, F, Tang, Y, Sun, Y, Veeraraghavan, VP, Mohan, SK, Cui, C. 6-shogaol, a active constiuents of ginger prevents UVB radiation mediated inflammation and oxidative stress through modulating NrF2 signaling in human epidermal keratinocytes (HaCaT cells). J Photochem Photobiol B Biol. 2019;197:111518. doi:10.1016/j.jphotobiol.2019.111518
Google Scholar | Crossref | Medline44. Annamalai, G, Suresh, K. [6]-Shogaol attenuates inflammation, cell proliferation via modulate NF-κB and AP-1 oncogenic signaling in 7,12-dimethylbenz[a]anthracene induced oral carcinogenesis. Biomed Pharmacother. 2018;98:484-490. doi:10.1016/j.biopha.2017.12.009
Google Scholar | Crossref | Medline45. Pan, MH, Hsieh, MC, Hsu, PC, et al. 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. Mol Nutr Food Res. 2008;52:1467-1477. doi:10.1002/mnfr.200700515
Google Scholar | Crossref | Medline | ISI46. Yocum, GT, Hwang, JJ, Mikami, M, Danielsson, J, Kuforiji, AS, Emala, CW. Ginger and its bioactive component 6-shogaol mitigate lung inflammation in a murine asthma model. Am J Physiol Cell Mol Physiol. 2020;318:L296-L303. doi:10.1152/ajplung.00249.2019
Google Scholar | Crossref47. Wang, JC, Zhou, LH, Zhao, HJ, Cai, SX. Examination of the protective effect of 6-shogaol against LPS-induced acute lung injury in mice via NF-κB attenuation. Arch Biol Sci. 2016;68:633-639. doi:

留言 (0)

沒有登入
gif