1.
Harbeck, N, Gnant, M. Breast cancer. Lancet. 2017;389:1134-1150.
Google Scholar |
Crossref |
Medline2.
Hao, JJ, Gong, T, Zhang, Y, et al. Characterization of gene rearrangements resulted from genomic structural aberrations in human esophageal squamous cell carcinoma KYSE150 cells. Gene. 2013;513:196-201.
Google Scholar |
Crossref |
Medline3.
Rhodes, LV, Tate, CR, Hoang, VT, et al. Regulation of triple-negative breast cancer cell metastasis by the tumor-suppressor liver kinase B1. Oncogenesis. 2015;4:e168. doi:
10.1038/oncsis.2015.27 Google Scholar |
Crossref |
Medline4.
Siegel, RL, Miller, KD, Jemal, A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7-30.
Google Scholar |
Crossref |
Medline5.
Ahmad, A. Pathways to breast cancer recurrence. ISRN Oncol. 2013;2013:290568. doi:
10.1155/2013/290568 Google Scholar |
Crossref |
Medline6.
Rojas, K, Stuckey, A. Breast cancer epidemiology and risk factors. Clin Obstet Gynecol. 2016;59:651-672.
Google Scholar |
Crossref |
Medline7.
Haydu, LE, Scolyer, RA, Lo, S, et al. Conditional survival: an assessment of the prognosis of patients at time points after initial diagnosis and treatment of locoregional melanoma metastasis. J Clin Oncol. 2017;35:1721-1729.
Google Scholar |
Crossref |
Medline8.
Klein, U, Lia, M, Crespo, M, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17:28-40.
Google Scholar |
Crossref |
Medline |
ISI9.
Guil, S, Esteller, M. DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol. 2009;41:87-95.
Google Scholar |
Crossref |
Medline |
ISI10.
Zhao, Z, Li, L, Du, P, et al. Transcriptional downregulation of miR-4306 serves as a new therapeutic target for triple negative breast cancer. Theranostics. 2019;9:1401-1416.
Google Scholar |
Crossref |
Medline11.
Boo, L, Ho, WY, Ali, NM, et al. MiRNA transcriptome profiling of spheroid-enriched cells with cancer stem cell properties in human breast MCF-7 cell line. Int J Biol Sci. 2016;12:427-445.
Google Scholar |
Crossref |
Medline12.
Stoll, A, Renz, J, Brack, A. Isolation and constitution of echinacoside, a glycoside from the roots of Echinacea angustifolia DC. Helv Chim Acta. 1950;33:1877-1893.
Google Scholar |
Crossref13.
Facino, RM, Carini, M, Aldini, G, Saibene, L, Pietta, P, Mauri, P. Echinacoside and caffeoyl conjugates protect collagen from free radical-induced degradation: a potential use of Echinacea extracts in the prevention of skin photodamage. Planta Med. 1995;61:510-514.
Google Scholar |
Crossref |
Medline14.
Jia, Y, Guan, Q, Jiang, Y, et al. Amelioration of dextran sulphate sodium-induced colitis in mice by echinacoside-enriched extract of Cistanche tubulosa. Phytother Res. 2014;28:110-119.
Google Scholar |
Crossref |
Medline15.
Jiang, Y, Tu, PF. Analysis of chemical constituents in Cistanche species. J Chromatogr. 2009;1216:1970-1979.
Google Scholar |
Crossref |
Medline |
ISI16.
Zhang, D, Li, H, Wang, JB. Echinacoside inhibits amyloid fibrillization of HEWL and protects against Aβ-induced neurotoxicity. Int J Biol Macromol. 2015;72:243-253.
Google Scholar |
Crossref |
Medline17.
Wu, Y, Li, L, Wen, T, Li, YQ. Protective effects of echinacoside on carbon tetrachloride-induced hepatotoxicity in rats. Toxicology. 2007;232:50-56.
Google Scholar |
Crossref |
Medline18.
Xie, H, Zhu, H, Cheng, C, Liang, Y, Wang, Z. Echinacoside retards cellular senescence of human fibroblastic cells MRC-5. Pharmazie. 2009;64:752-754.
Google Scholar |
Medline19.
Wang, S, Zheng, G, Tian, S, et al. Echinacoside improves hematopoietic function in 5-FU-induced myelosuppression mice. Life Sci. 2015;123:86-92.
Google Scholar |
Crossref |
Medline20.
Wang, W, Luo, J, Liang, Y, Li, X. Echinacoside suppresses pancreatic adenocarcinoma cell growth by inducing apoptosis via the mitogen-activated protein kinase pathway. Mol Med Rep. 2016;13:2613-2618.
Google Scholar |
Crossref |
Medline21.
Dong, L, Wang, H, Niu, J, et al. Echinacoside induces apoptotic cancer cell death by inhibiting the nucleotide pool sanitizing enzyme MTH1. Onco Targets Ther. 2015;8:3649-3664.
Google Scholar |
Medline22.
Ye, Y, Song, Y, Zhuang, J, Wang, G, Ni, J, Xia, W. Anticancer effects of echinacoside in hepatocellular carcinoma mouse model and HepG2 cells. J Cell Physiol. 2019;234:1880-1888.
Google Scholar |
Crossref |
Medline23.
Tang, C, Gong, L, Lvzi, XU, Qiu, K, Zhang, Z, Wan, L. Echinacoside inhibits breast cancer cells by suppressing the Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun. 2020;526:170-175.
Google Scholar |
Crossref |
Medline24.
Zhang, B, Tian, L, Xie, J, Chen, G, Wang, F. Targeting miRNAs by natural products: a new way for cancer therapy. Biomed Pharmacother. 2020;130:110546. doi:
10.1016/j.biopha.2020.110546 Google Scholar |
Crossref25.
Sethi, S, Li, Y, Sarkar, FH. Regulating miRNA by natural agents as a new strategy for cancer treatment. Curr Drug Targets. 2013;14:1167-1174.
Google Scholar |
Crossref |
Medline26.
Cui, YT, Liu, B, Xie, J, Xu, P, Habte-Tsion, HM, Zhang, YY. The effect of emodin on cytotoxicity, apoptosis and antioxidant capacity in the hepatic cells of grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2014;38:74-79.
Google Scholar |
Crossref |
Medline27.
Cheng, C, Jiao, JT, Qian, Y, et al. Curcumin induces G2/M arrest and triggers apoptosis via FoxO1 signaling in U87 human glioma cells. Mol Med Rep. 2016;13:3763-3770.
Google Scholar |
Crossref |
Medline28.
Yue, S, Ye, X, Zhou, T, et al. PGRN(-/-) TAMs-derived exosomes inhibit breast cancer cell invasion and migration and its mechanism exploration. Life Sci. 2021;264:118687. doi:
10.1016/j.lfs.2020.118687 Google Scholar |
Crossref29.
Rupaimoole, R, Slack, FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203-222.
Google Scholar |
Crossref |
Medline |
ISI30.
Li, M, Huo, X, Davuljigari, CB, Dai, Q, Xu, X. MicroRNAs and their role in environmental chemical carcinogenesis. Environ Geochem Health. 2019;41:225-247.
Google Scholar |
Crossref |
Medline31.
Ma, S, Tang, KH, Chan, YP, et al. miR-130b promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell. 2010;7:694-707.
Google Scholar |
Crossref |
Medline32.
Yuan, K, Xie, K, Fox, J, et al. Decreased levels of miR-224 and the passenger strand of miR-221 increase MBD2, suppressing maspin and promoting colorectal tumor growth and metastasis in mice. Gastroenterology. 2013;145:853-64.e9.
Google Scholar |
Crossref |
Medline33.
Chen, DL, Wang, DS, Wu, WJ, et al. Overexpression of paxillin induced by miR-137 suppression promotes tumor progression and metastasis in colorectal cancer. Carcinogenesis. 2013;34:803-811.
Google Scholar |
Crossref |
Medline |
ISI34.
Kinouchi, M, Uchida, D, Kuribayashi, N, Tamatani, T, Nagai, H, Miyamoto, Y. Involvement of miR-518c-5p to growth and metastasis in oral cancer. PLoS One. 2014;9:e115936. doi:
10.1371/journal.pone.0115936 Google Scholar |
Crossref |
Medline35.
Kinose, Y, Sawada, K, Nakamura, K, et al. The hypoxia-related microRNA miR-199a-3p displays tumor suppressor functions in ovarian carcinoma. Oncotarget. 2015;6:11342-11356.
Google Scholar |
Crossref |
Medline36.
Ma, L, Teruya-Feldstein, J, Weinberg, RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682-688.
Google Scholar |
Crossref |
Medline |
ISI37.
Fang, JH, Zhou, HC, Zeng, C, et al. MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology. 2011;54:1729-1740.
Google Scholar |
Crossref |
Medline38.
Wang, R, Zhao, N, Li, S, et al. MicroRNA-195 suppresses angiogenesis and metastasis of hepatocellular carcinoma by inhibiting the expression of VEGF, VAV2, and CDC42. Hepatology. 2013;58:642-653.
Google Scholar |
Crossref |
Medline39.
Lamouille, S, Subramanyam, D, Blelloch, R, Derynck, R. Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Curr Opin Cell Biol. 2013;25:200-207.
Google Scholar |
Crossref |
Medline40.
Kim, S, Song, JH, Kim, S, et al. Loss of oncogenic miR-155 in tumor cells promotes tumor growth by enhancing C/EBP-β-mediated MDSC infiltration. Oncotarget. 2016;7:11094-11112.
Google Scholar |
Crossref |
Medline41.
Dang, CV, Le, A, Gao, P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res. 2009;15:6479-6483.
Google Scholar |
Crossref |
Medline |
ISI42.
Dong, L, Yu, D, Wu, N, et al. Echinacoside induces apoptosis in human SW480 colorectal cancer cells by induction of oxidative DNA damages. Int J Mol Sci. 2015;16:14655-14668.
Google Scholar |
Crossref |
Medline43.
Onitilo, AA, Engel, JM, Greenlee, RT, Mukesh, BN. Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin Med Res. 2009;7:4-13.
Google Scholar |
Crossref |
Medline44.
Badve, SS, Baehner, FL, Gray, RP, et al. Estrogen- and progesterone-receptor status in ECOG 2197: comparison of immunohistochemistry by local and central laboratories and quantitative reverse transcription polymerase chain reaction by central laboratory. J Clin Oncol. 2008;26:2473-2481.
Google Scholar |
Crossref |
Medline |
ISI45.
Giri, DK, Ali-Seyed, M, Li, LY, et al. Endosomal transport of ErbB-2: mechanism for nuclear entry of the cell surface receptor. Mol Cell Biol. 2005;25:11005-11018.
Google Scholar |
Crossref |
Medline46.
Béguelin, W, Díaz Flaqué, MC, Proietti, CJ, et al. Progesterone receptor induces ErbB-2 nuclear translocation to promote breast cancer growth via a novel transcriptional effect: ErbB-2 function as a coactivator of Stat3. Mol Cell Biol. 2010;30:5456-5472.
Google Scholar |
Crossref |
Medline47.
Phuah, NH, Nagoor, NH. Regulation of microRNAs by natural agents: new strategies in cancer therapies. Biomed Res Int. 2014;2014:804510. doi:
10.1155/2014/804510 Google Scholar |
Crossref |
Medline48.
Li, Y, Kong, D, Wang, Z, Sarkar, FH. Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res. 2010;27:1027-1041.
Google Scholar |
Crossref |
Medline49.
Sun, M, Estrov, Z, Ji, Y, Coombes, KR, Harris, DH, Kurzrock, R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther. 2008;7:464-473.
留言 (0)