ceRNA Networks: The Backbone Role in Neoadjuvant Chemoradiotherapy Resistance/Sensitivity of Locally Advanced Rectal Cancer

1. Arnold, M, Sierra, MS, Laversanne, M, Soerjomataram, I, Jemal, A, Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683-691.
Google Scholar | Crossref2. Siegel, RL, Miller, KD. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):145-164.
Google Scholar | Crossref3. Siegel, R, Desantis, C, Jemal, A. Colorectal cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):104-117.
Google Scholar | Crossref4. Li, M, Gu, J. Changing patterns of colorectal cancer in China over a period of 20 years. World J Gastroenterol. 2005;11(30):4685-4688.
Google Scholar | Crossref5. Xu, AG, Yu, ZJ, Jiang, B, et al. Colorectal cancer in Guangdong Province of China: a demographic and anatomic survey. World J Gastroenterol. 2010;16(8):960-965.
Google Scholar | Crossref6. De Caluwé, L, Van Nieuwenhove, Y, Ceelen, WP. Preoperative chemoradiation versus radiation alone for stage II and III resectable rectal cancer. Cochrane Database Syst Rev. 2013: Feb 28;(2):CD006041. doi:10.1002/14651858.CD006041.pub3.
Google Scholar | Crossref | Medline7. Rödel, C, Liersch, T, Becker, H, et al. Preoperative chemoradiotherapy and postoperative chemotherapy with fluorouracil and oxaliplatin versus fluorouracil alone in locally advanced rectal cancer: initial results of the German CAO/ARO/AIO-04 randomised phase 3 trial. Lancet Oncol. 2012;13(7):679-687.
Google Scholar | Crossref | Medline8. Yan, X, Chen, J, Meng, Y, He, C. RAD18 May function as a predictor of response to preoperative concurrent chemoradiotherapy in patients with locally advanced rectal cancer through caspase-9-caspase-3-dependent apoptotic pathway. Cancer Med. 2019;8(6):3094-3104.
Google Scholar | Crossref | Medline9. Fokas, E, Liersch, T, Fietkau, R, et al. Tumor regression grading after preoperative chemoradiotherapy for locally advanced rectal carcinoma revisited: updated results of the CAO/ARO/AIO-94 trial. J Clin Oncol. 2014;32(15):1554-1562.
Google Scholar | Crossref10. Mandard, AM, Dalibard, F, Mandard, JC, et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer. 1994;73(11):2680-2686.
Google Scholar | Crossref | Medline | ISI11. Svoboda, M, Sana, J, Fabian, P, et al. MicroRNA expression profile associated with response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Radiat Oncol. 2012;7:195.
Google Scholar | Crossref | Medline12. Morgan, MA, Lawrence, TS. Molecular pathways: overcoming radiation resistance by targeting DNA damage response pathways. Clin Cancer Res. 2015;21(13):2898-2904.
Google Scholar | Crossref13. Smeenk, G, Wiegant, WW, Vrolijk, H, Solari, AP, Pastink, A, van Attikum, H. The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage. J Cell Biol. 2010;190(5):741-749.
Google Scholar | Crossref14. Cai, Y, Geutjes, EJ, de Lint, K, et al. The NuRD complex cooperates with DNMTs to maintain silencing of key colorectal tumor suppressor genes. Oncogene. 2014;33(17):2157-2168.
Google Scholar | Crossref15. Wang, L, Zhang, XM, Li, Z, et al. Overexpression of nuclear β-catenin in rectal adenocarcinoma is associated with radioresistance. World J Gastroenterol. 2013;19(40):6876-6882.
Google Scholar | Crossref16. Chang, H, Wei, JW, Tao, YL, et al. CCR6 Is a predicting biomarker of radiosensitivity and potential target of radiosensitization in rectal cancer. Cancer Res Treat. 2018;50(4):1203-1213.
Google Scholar | Crossref17. Ferrandon, S, DeVecchio, J, Duraes, L. CoA synthase (COASY) mediates radiation resistance via PI3 K signaling in rectal cancer. Cancer Res. 2020;80(2):334-346.
Google Scholar | Crossref18. Hongo, K, Kazama, S, Sunami, E, et al. Immunohistochemical detection of CD133 is associated with tumor regression grade after chemoradiotherapy in rectal cancer. Med Oncol. 2012;29(4):2849-2857.
Google Scholar | Crossref19. Wang, HC, Chou, CL, Yang, CC. Over-expression of CHD4 is an independent biomarker of poor prognosis in patients with rectal cancers receiving concurrent chemoradiotherapy. Int J Mol Sci. 2019;20(17):4087.
Google Scholar20. Zhang, RX, Zhou, ZG, Lu, SX, et al. Pim-3 as a potential predictor of chemoradiotherapy resistance in locally advanced rectal cancer patients. Sci Rep. 2017;7(1):16043.
Google Scholar | Crossref21. Troncarelli Flores, BC, Souza, ESV, Ali Abdallah, E, Mello, CAL, Gobo Silva, ML. Molecular and kinetic analyses of circulating tumor cells as predictive markers of treatment response in locally advanced rectal cancer patients. Cells. 2019;8(7):641.
Google Scholar22. Huang, MY, Huang, JJ, Huang, CM, et al. Relationship between expression of proteins ERCC1, ERCC2, and XRCC1 and clinical outcomes in patients with rectal cancer treated with FOLFOX-based preoperative chemoradiotherapy. World J Surg. 2017;41(11):2884-2897.
Google Scholar | Crossref23. Zlobec, I, Vuong, T, Compton, CC, et al. Combined analysis of VEGF and EGFR predicts complete tumour response in rectal cancer treated with preoperative radiotherapy. Br J Cancer. 2008;98(2):450-456.
Google Scholar | Crossref24. Caramés, C, Cristóbal, I, Moreno, V, et al. MicroRNA-21 predicts response to preoperative chemoradiotherapy in locally advanced rectal cancer. Int J Colorectal Dis. 2015;30(7):899-906.
Google Scholar | Crossref25. Caramés, C, Cristobal, I, Moreno, V, et al. MicroRNA-31 emerges as a predictive biomarker of pathological response and outcome in locally advanced rectal cancer. Int J Mol Sci. 2016;17(6):878.
Google Scholar26. Machackova, T, Trachtova, K, Prochazka, V, et al. Tumor microRNAs identified by small RNA sequencing as potential response predictors in locally advanced rectal cancer patients treated with neoadjuvant chemoradiotherapy. Cancer Genomics Proteomics. 2020;17(3):249-257.
Google Scholar | Crossref27. Lopes-Ramos, CM, Habr-Gama, A, Quevedo Bde, S, et al. Overexpression of miR-21-5p as a predictive marker for complete tumor regression to neoadjuvant chemoradiotherapy in rectal cancer patients. BMC Med Genomics. 2014;7:68.
Google Scholar | Crossref | Medline28. Luo, J, Liu, L, Zhou, N, et al. miR-519b-3p promotes responsiveness to preoperative chemoradiotherapy in rectal cancer patients by targeting ARID4B. Gene. 2018;655:84-90.
Google Scholar | Crossref | Medline29. Bhangu, A, Wood, G, Brown, G, Darzi, A, Tekkis, P, Goldin, R. The role of epithelial mesenchymal transition and resistance to neoadjuvant therapy in locally advanced rectal cancer. Colorectal Dis. 2014;16(4):O133-O143.
Google Scholar | Crossref30. Hotchi, M, Shimada, M, Kurita, N, et al. microRNA expression is able to predict response to chemoradiotherapy in rectal cancer. Mol Clin Oncol. 2013;1(1):137-142.
Google Scholar31. Ferrando, L, Cirmena, G, Garuti, A, et al. Development of a long non-coding RNA signature for prediction of response to neoadjuvant chemoradiotherapy in locally advanced rectal adenocarcinoma. PLoS One. 2020;15(2):e0226595.
Google Scholar32. Reed, E . Platinum-DNA adduct, nucleotide excision repair and platinum based anti-cancer chemotherapy. Cancer Treat Rev. 1998;24(5):331-344.
Google Scholar | Crossref33. Altaha, R, Liang, X, Yu, JJ, Reed, E. Excision repair cross complementing-group 1: gene expression and platinum resistance. Int J Mol Med. 2004;14(6):959-970.
Google Scholar34. Weaver, DA, Crawford, EL, Warner, KA, Elkhairi, F, Khuder, SA, Willey, JC. ABCC5, ERCC2, XPA and XRCC1 transcript abundance levels correlate with cisplatin chemoresistance in non-small cell lung cancer cell lines. Mol Cancer. 2005;4(1):18.
Google Scholar | Crossref | Medline35. Negrei, C, Hudita, A, Ginghina, O, et al. Colon cancer cells gene expression signature as response to 5-fluorouracil, oxaliplatin, and folinic acid treatment. Front Pharmacol. 2016;7:172.
Google Scholar | Crossref | Medline36. Tang, M, Lu, X, Zhang, C, et al. Downregulation of SIRT7 by 5-fluorouracil induces radiosensitivity in human colorectal cancer. Theranostics. 2017;7(5):1346-1359.
Google Scholar | Crossref37. Rimkus, C, Friederichs, J, Boulesteix, AL, et al. Microarray-based prediction of tumor response to neoadjuvant radiochemotherapy of patients with locally advanced rectal cancer. Clin Gastroenterol Hepatol. 2008;6(1):53-61.
Google Scholar | Crossref38. Schmidt-Ullrich, RK, Mikkelsen, RB, Dent, P, et al. Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene. 1997;15(10):1191-1197.
Google Scholar | Crossref39. Dittmann, K, Mayer, C, Kehlbach, R, Rodemann, HP. Radiation-induced caveolin-1 associated EGFR internalization is linked with nuclear EGFR transport and activation of DNA-PK. Mol Cancer. 2008;7:69.
Google Scholar | Crossref | Medline40. Baptistella, AR, Landemberger, MC, Dias, MVS, et al. Rab5C enhances resistance to ionizing radiation in rectal cancer. J Mol Med (Berl). 2019;97(6):855-869.
Google Scholar | Crossref41. Srinivasan, B, Sibon, OC. Coenzyme A, more than “just” a metabolic cofactor. Biochem Soc Trans. 2014;42(4):1075-1079.
Google Scholar | Crossref42. Lee, SG, Su, ZZ, Emdad, L, Sarkar, D, Fisher, PB. Astrocyte elevated gene-1 (AEG-1) is a target gene of oncogenic Ha-ras requiring phosphatidylinositol 3-kinase and c-Myc. Proc Natl Acad Sci U S A. 2006;103(46):17390-17395.
Google Scholar | Crossref43. Lee, SG, Su, ZZ, Emdad, L, Sarkar, D, Franke, TF, Fisher, PB. Astrocyte elevated gene-1 activates cell survival pathways through PI3K-Akt signaling. Oncogene. 2008;27(8):1114-1121.
Google Scholar | Crossref44. Sarkar, D, Park, ES, Emdad, L, Lee, SG, Su, ZZ, Fisher, PB. Molecular basis of nuclear factor-kappaB activation by astrocyte elevated gene-1. Cancer Res. 2008;68(5):1478-1484.
Google Scholar | Crossref45. Yoo, BK, Emdad, L, Lee, SG, et al. Astrocyte elevated gene-1 (AEG-1): a multifunctional regulator of normal and abnormal physiology. Pharmacol Ther. 2011;130(1):1-8.
Google Scholar | Crossref46. Emdad, L, Lee, SG, Su, ZZ, et al. Astrocyte elevated gene-1 (AEG-1) functions as an oncogene and regulates angiogenesis. Proc Natl Acad Sci U S A. 2009;106(50):21300-21305.
Google Scholar | Crossref47. Gnosa, S, Zhang, H, Brodin, VP, Carstensen, J, Adell, G, Sun, XF. AEG-1 expression is an independent prognostic factor in rectal cancer patients with preoperative radiotherapy: a study in a Swedish clinical trial. Br J Cancer. 2014;111(1):166-173.
Google Scholar | Crossref48. Kapur, N, Mir, H, Clark Iii, CE, et al. CCR6 Expression in colon cancer is associated with advanced disease and supports epithelial-to-mesenchymal transition. Br J Cancer. 2016;114(12):1343-1351.
Google Scholar | Crossref49. Nandi, B, Pai, C, Huang, Q, Prabhala, RH, Munshi, NC, Gold, JS. CCR6, The sole receptor for the chemokine CCL20, promotes spontaneous intestinal tumorigenesis. PLoS One. 2014;9(5):e97566.
Google Scholar | Crossref50. Stolina, M, Sharma, S, Lin, Y, et al. Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol. 2000;164(1):361-370.
Google Scholar | Crossref51. Tsujii, M, Kawano, S, DuBois, RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci U S A. 1997;94(7):3336-3340.
Google Scholar | Crossref52. Tsujii, M, Kawano, S, Tsuji, S, Sawaoka, H, Hori, M, DuBois, RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 1998;93(5):705-716.
Google Scholar | Crossref53. Tsujii, M, DuBois, RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell. 1995;83(3):493-501.
Google Scholar | Crossref54. DuBois, RN, Shao, J, Tsujii, M, Sheng, H, Beauchamp, RD. G1 delay in cells overexpressing prostaglandin endoperoxide synthase-2. Cancer Res. 1996;56(4):733-737.
Google Scholar55. Sheng, H, Shao, J, Morrow, JD, Beauchamp, RD, DuBois, RN. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res. 1998;58(2):362-366.
Google Scholar56. de Heer, P, Gosens, MJ, de Bruin, EC, et al. Cyclooxygenase 2 expression in rectal cancer is of prognostic significance in patients receiving preoperative radiotherapy. Clin Cancer Res. 2007;13(10):2955-2960.
Google Scholar | Crossref

留言 (0)

沒有登入
gif