High Expression of VAV Gene Family Predicts Poor Prognosis of Acute Myeloid Leukemia

1. Zhao, XS, Chang, YJ. [Diagnosis and risk stratification in patients with acute myeloid leukemia]. Zhonghua Nei Ke Za Zhi. 2021;60(3):259‐263. doi:10.3760/cma.j.cn112138-20201210-01003
Google Scholar | Crossref | Medline2. Siegel, RL, Miller, KD, Fuchs, HE, Jemal, A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7‐33. doi:10.3322/caac.21654
Google Scholar | Crossref | Medline3. Rodríguez-Fdez, S, Lorenzo-Martín, LF, Fabbiano, S, et al. New functions of Vav family proteins in cardiovascular biology, skeletal muscle, and the nervous system. Biology (Basel. 2021;10[9]:857. doi:10.3390/biology10090857
Google Scholar | Medline4. Li, X, Zhu, J, Liu, Y, Duan, C, Chang, R, Zhang, C. MicroRNA-331-3p inhibits epithelial-mesenchymal transition by targeting ErbB2 and VAV2 through the Rac1/PAK1/beta-catenin axis in non-small-cell lung cancer. Cancer Sci. 2019;110(6):1883‐1896. doi:10.1111/cas.14014
Google Scholar | Crossref | Medline5. Chen, Z, Chen, X, Lu, B, et al. Up-regulated LINC01234 promotes non-small-cell lung cancer cell metastasis by activating VAV3 and repressing BTG2 expression. J Hematol Oncol. 2020;13(1):7. doi:10.1186/s13045-019-0842-2
Google Scholar | Crossref | Medline6. Zhu, X, Jin, H, Xia, Z, et al. Vav1 expression is increased in esophageal squamous cell carcinoma and indicates poor prognosis. Biochem Biophys Res Commun. 2017;486(2):571‐576. doi:10.1016/j.bbrc.2017.03.091
Google Scholar | Crossref | Medline7. Lorenzo-Martin, LF, Fernandez-Parejo, N, Menacho-Marquez, M, et al. VAV2 Signaling promotes regenerative proliferation in both cutaneous and head and neck squamous cell carcinoma. Nat Commun. 2020;11(1):4788. doi:10.1038/s41467-020-18524-3
Google Scholar | Crossref | Medline8. Ruggiero, C, Doghman-Bouguerra, M, Sbiera, S, et al. Dosage-dependent regulation of VAV2 expression by steroidogenic factor-1 drives adrenocortical carcinoma cell invasion. Sci Signal. 2017;10(469):eaal2464. doi:10.1126/scisignal.aal2464
Google Scholar | Crossref | Medline9. Tsuboi, M, Taniuchi, K, Furihata, M, et al. Vav3 is linked to poor prognosis of pancreatic cancers and promotes the motility and invasiveness of pancreatic cancer cells. Pancreatology. 2016;16(5):905‐916. doi:10.1016/j.pan.2016.07.002
Google Scholar | Crossref | Medline10. Tan, B, Li, Y, Shi, X, et al. Expression of Vav3 protein and its prognostic value in patients with gastric cancer. Pathol Res Pract. 2017;213(5):435‐440. doi:10.1016/j.prp.2017.01.028
Google Scholar | Crossref | Medline11. Xiao, Y, Li, CL, Wang, HY, Liu, YJ. LINC00265 Targets miR-382-5p to regulate SAT1, VAV3 and angiogenesis in osteosarcoma. Aging (Albany NY). 2020;12(20):20212‐20225. doi:10.18632/aging.103762
Google Scholar | Medline12. Tang, Z, Li, C, Kang, B, Gao, G, Li, C, Zhang, Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98‐W102. doi:10.1093/nar/gkx247
Google Scholar | Crossref | Medline13. Mizuno, H, Kitada, K, Nakai, K, Sarai, A. Prognoscan: a new database for meta-analysis of the prognostic value of genes. BMC Med Genomics. 2009;2:18. doi:10.1186/1755-8794-2-18
Google Scholar | Crossref | Medline | ISI14. Barretina, J, Caponigro, G, Stransky, N, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603‐607. doi:10.1038/nature11003
Google Scholar | Crossref | Medline | ISI15. Squizzato, S, Park, YM, Buso, N, et al. The EBI search engine: providing search and retrieval functionality for biological data from EMBL-EBI. Nucleic Acids Res. 2015;43(W1):W585‐W588. doi:10.1093/nar/gkv316
Google Scholar | Crossref | Medline16. Chandrashekar, DS, Bashel, B, Balasubramanya, SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19(8):649‐658. doi:10.1016/j.neo.2017.05.002
Google Scholar | Crossref | Medline17. Vasaikar, SV, Straub, P, Wang, J, Zhang, B. Linkedomics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46(D1):D956‐D963. doi:10.1093/nar/gkx1090
Google Scholar | Crossref | Medline18. Cerami, E, Gao, J, Dogrusoz, U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401‐404. doi:10.1158/2159-8290.CD-12-0095
Google Scholar | Crossref | Medline | ISI19. Szklarczyk, D, Gable, AL, Lyon, D, et al. STRING V11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607‐D613. doi:10.1093/nar/gky1131
Google Scholar | Crossref | Medline20. Huang da, W, Sherman, BT, Lempicki, RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1‐13. doi:10.1093/nar/gkn923
Google Scholar | Crossref | Medline | ISI21. Huang da, W, Sherman, BT, Lempicki, RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44‐57. doi:10.1038/nprot.2008.211
Google Scholar | Crossref | Medline | ISI22. Otasek, D, Morris, JH, Boucas, J, Pico, AR, Demchak, B. Cytoscape automation: empowering workflow-based network analysis. Genome Biol. 2019;20(1):185. doi:10.1186/s13059-019-1758-4
Google Scholar | Crossref | Medline23. Shannon, P, Markiel, A, Ozier, O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498‐2504. doi:10.1101/gr.1239303
Google Scholar | Crossref | Medline | ISI24. Dohner, H, Estey, E, Grimwade, D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424‐447. doi:10.1182/blood-2016-08-733196
Google Scholar | Crossref | Medline25. Bustelo, XR, Rubin, SD, Suen, KL, Carrasco, D, Barbacid, M. Developmental expression of the vav protooncogene. Cell Growth Differ. 1993;4(4):297‐308.
Google Scholar | Medline26. Katzav, S, Martin-Zanca, D. Barbacid M. vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J. 1989;8(8):2283‐2290.
Google Scholar | Crossref | Medline27. Schuebel, KE, Bustelo, XR, Nielsen, DA, et al. Isolation and characterization of murine vav2, a member of the vav family of proto-oncogenes. Oncogene. 1996;13(2):363‐371.
Google Scholar | Medline28. Trenkle, T, McClelland, M, Adlkofer, K, Welsh, J. Major transcript variants of VAV3, a new member of the VAV family of guanine nucleotide exchange factors. Gene. 2000;245(1):139‐149. doi:10.1016/s0378-1119(00)00026-3
Google Scholar | Crossref | Medline29. Xu, P, Ma, JY, Ma, JJ, et al. Multiple pro-tumorigenic functions of the human minor histocompatibility antigen-1 (HA-1) in melanoma progression. J Dermatol Sci. 2017;88(2):216‐224. doi:10.1016/j.jdermsci.2017.07.004
Google Scholar | Crossref | Medline30. Xiao, PN, Dolinska, M, Sandhow, L, et al. Sipa1 deficiency-induced bone marrow niche alterations lead to the initiation of myeloproliferative neoplasm. Blood Adv. 2018;2(5):534‐548. doi:10.1182/bloodadvances.2017013599
Google Scholar | Crossref | Medline31. Singh, KP, Bennett, JA, Casado, FL, Walrath, JL, Welle, SL, Gasiewicz, TA. Loss of aryl hydrocarbon receptor promotes gene changes associated with premature hematopoietic stem cell exhaustion and development of a myeloproliferative disorder in aging mice. Stem Cells Dev. 2014;23(2):95‐106. doi:10.1089/scd.2013.0346
Google Scholar | Crossref | Medline32. Polak, A, Bialopiotrowicz, B, Krzymieniewska, B, et al. SYK Inhibition targets acute myeloid leukemia stem cells by blocking their oxidative metabolism. Cell Death Dis. 2020;11(11):956. doi:10.1038/s41419-020-03156-8
Google Scholar | Crossref | Medline33. Cremer, A, Ellegast, JM, Alexe, G, et al. Resistance mechanisms to SYK inhibition in acute myeloid leukemia. Cancer Discov. 2020;10(2):214‐231. doi:10.1158/2159-8290.CD-19-0209
Google Scholar | Crossref | Medline34. Elgamal, OA, Mehmood, A, Jeon, JY, et al. Preclinical efficacy for a novel tyrosine kinase inhibitor, ArQule 531 against acute myeloid leukemia. J Hematol Oncol. 2020;13(1):8. doi:10.1186/s13045-019-0821-7
Google Scholar | Crossref | Medline35. Wasik-Szczepanek, E, Szymczyk, A, Szczepanek, D, et al. Richter syndrome: a rare complication of chronic lymphocytic leukemia or small lymphocytic lymphoma. Adv Clin Exp Med. 2018;27(12):1683‐1689. doi:10.17219/acem/75903
Google Scholar | Crossref | Medline36. Imoto, N, Hayakawa, F, Kurahashi, S, et al. B cell linker protein (BLNK) Is a selective target of repression by PAX5-PML protein in the differentiation block that leads to the development of acute lymphoblastic leukemia. J Biol Chem. 2016;291(9):4723‐4731. doi:10.1074/jbc.M115.637835
Google Scholar | Crossref | Medline37. Gao, Y, Sun, B, Hu, J, et al. Identification of gene modules associated with survival of diffuse large B-cell lymphoma treated with CHOP-based chemotherapy. Pharmacogenomics J. 2020;20(5):705‐716. doi:10.1038/s41397-020-0161-6
Google Scholar | Crossref | Medline38. Li, C, Zhu, B, Chen, J, Huang, X. Novel prognostic genes of diffuse large B-cell lymphoma revealed by survival analysis of gene expression data. Onco Targets Ther. 2015;8:3407‐3413. doi:10.2147/OTT.S90057
Google Scholar | Crossref | Medline39. Pan, T, He, Y, Chen, H, et al. Identification and validation of a prognostic gene signature for diffuse large B-cell lymphoma based on tumor microenvironment-related genes. Front Oncol. 2021;11:614211. doi:10.3389/fonc.2021.614211
Google Scholar | Crossref | Medline40. Vita, S, Li, Y, Harris, C, et al. The gp130 cytokine IL-11 regulates engraftment of Vav1 − /− hematopoietic stem and progenitor cells in lethally irradiated recipients. Stem Cells. 2018;36(3):446‐457. doi:10.1002/stem.2760
Google Scholar | Crossref | Medline41. Yamashita, M, Passegué, E. TNF-alpha Coordinates hematopoietic stem cell survival and myeloid regeneration. Cell Stem Cell. 2019;25(3):357‐372.e7. doi:10.1016/j.stem.2019.05.019
Google Scholar | Crossref | Medline42. Han, J, Kim, H, Jung, H. Ampelopsin inhibits cell proliferation and induces apoptosis in HL60 and K562 leukemia cells by downregulating AKT and NF-κB signaling pathways. Int J Mol Sci. 2021;22(8):4265. doi:10.3390/ijms22084265
Google Scholar | Crossref | Medline43. Yougbare, I, Keravis, T, Lugnier, C. NCS 613, A PDE4 inhibitor, by increasing cAMP level suppresses systemic inflammation and immune complexes deposition in kidney of MRL/lpr lupus- prone mice. Biochim Biophys Acta Mol Basis Dis. 2021;1867(3):166019. doi:10.1016/j.bbadis.2020.166019
Google Scholar | Crossref | Medline44. Roderick, J, Gallagher, K, Murphy, L, et al. Prostaglandin E2 stimulates cAMP signaling and resensitizes human leukemia cells to glucocorticoid-induced cell death. Blood. 2021;137(4):500‐512. doi:10.1182/blood.2020005712
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif