Therapeutic Potential of Peptides Derived from Animal Venoms: Current Views and Emerging Drugs for Diabetes

1. Pennington, M, Czerwinski, A, Norton, R. Peptide therapeutics from venom: current status and potential. Bioorg Med Chem. 2018;26:2738-2758.
Google Scholar | Crossref | Medline2. King, G. Venoms to drugs: venom as a source for the development of human therapeutics. Chem Sci. 2015;42: 80-96.
Google Scholar3. Herzig, V, Cristofori-Armstrong, B, Israel, M, Nixon, S, Vetter, I, King, G. Animal toxins—Nature’s evolutionary-refined toolkit for basic research and drug discovery. Biochem Pharmacol. 2020;181:114096.
Google Scholar | Crossref | Medline4. Juárez, P, Sanz, L, Calvete, J. Snake venomics: characterization of protein families in Sistrurus barbouri venom by cysteine mapping, N-terminal sequencing, and tandem mass spectrometry analysis. Proteomics. 2004;4:327-338.
Google Scholar | Crossref | Medline5. Ghezellou, P, Garikapati, V, Kazemi, S, Strupat, K, Ghassempour, A, Spengler, B. A perspective view of top-down proteomics in snake venom research. Rapid Commun Mass Spectrom. 2018;33:20-27.
Google Scholar | Crossref | Medline6. Ferreira, SH, Bartelt, DC, Grenne, LJ. Greene isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry. 1970;9:2583-2593.
Google Scholar | Crossref | Medline7. Harris, C, Smith, G. Captopril (Capoten®, E.R. Squibb & Sons). Drug Intell Clin Pharm. 1981;15:932-939.
Google Scholar | SAGE Journals8. Ondetti, M, Williams, N, Sabo, E, Pluscec, J, Weaver, E, Kocy, O. Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry. 1971;10:4033-4039.
Google Scholar | Crossref | Medline9. Ferguson, R, Brunner, H, Turini, G, Gavras, H, Mckinstry, D. A specific orally active inhibitor of angiotensin-converting enzyme in man. Lancet. 1977;309:775-778.
Google Scholar | Crossref10. Patchett, A. The chemistry of enalapril. Br J Clin Pharmacol. 1984;18:201S-207S.
Google Scholar | Crossref | Medline11. Jaffe, I. Adverse effects profile of sulfhydryl compounds in man. Am J Med. 1986;80:471-476.
Google Scholar | Crossref | Medline | ISI12. Ulm, E, Hichens, M, Gomez, H. Enalapril maleate and a lysine analogue (MK-521): disposition in man. Br J Clin Pharmacol. 1982;14:357-362.
Google Scholar | Crossref | Medline13. Cleary, J, Taylor, J. Enalapril: a new angiotensin converting enzyme inhibitor. Drug Intell Clin Pharm. 1986;20:177-186.
Google Scholar | SAGE Journals14. Wallace, M. Ziconotide: a new nonopioid intrathecal analgesic for the treatment of chronic pain. Expert Rev Neurother. 2006;6:1423-1428.
Google Scholar | Crossref | Medline15. McIntosh, M, Cruz, L, Hunkapiller, M, Gray, W, Olivera, B. Isolation and structure of a peptide toxin from the marine snail Conus magus. Arch Biochem Biophys. 1982;218:329-334.
Google Scholar | Crossref | Medline16. Miljanich, G. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem. 2004;11:3029-3040.
Google Scholar | Crossref | Medline | ISI17. Maggi, C, Giuliani, S, Santicioli, I, Tramontana, M, Meli, A. Effect of omega conotoxin on reflex responses mediated by activation of capsaicin-sensitive nerves of the rat urinary bladder and peptide release from the rat spinal cord. Neuroscience. 1990;34:243-250.
Google Scholar | Crossref | Medline18. Feng, Z, Hamid, J, Doering, C, Bosey, G, Snutch, T, Zamponi, G. Residue Gly1326of the N-type calcium channel α1B subunit controls reversibility of ω-conotoxin GVIA and MVIIA block. J Biol Chem. 2001;276:15728-15735.
Google Scholar | Crossref | Medline19. Takasusuki, T, Yaksh, T. Regulation of spinal substance P release by intrathecal calcium channel blockade. Anesthesiology. 2011;115:153-164.
Google Scholar | Crossref | Medline20. Safavi-Hemami, H, Brogan, SE, Olivera, BM. Pain therapeutics from cone snail venoms: from Ziconotide to novel non-opioid pathways. J Proteomics. 2019;190:12-20.
Google Scholar | Crossref | Medline21. Gan, ZR, Gould, RJ, Jacobs, JW, Friedman, PA, Polokoff, MA., Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus. J Biol Chem. 1988;263:19827-19832.
Google Scholar | Crossref | Medline22. Huang, TF, Holt, JC, Lukasiewicz, H, Niewiarowski, S., Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. J Biol Chem. 1987;262:16157-16163.
Google Scholar | Crossref | Medline23. Coller, B, Folts, J, Smith, S, Scudder, L, Jordan, R. Abolition of in vivo platelet thrombus formation in primates with monoclonal antibodies to the platelet GPIIb/IIIa receptor. Correlation with bleeding time, platelet aggregation, and blockade of GPIIb/IIIa receptors. Circulation. 1989;80:1766-1774.
Google Scholar | Crossref | Medline | ISI24. Egbertson, M, Chang, C, Duggan, M, et al. Non-peptide fibrinogen receptor antagonists. 2. Optimization of a tyrosine template as a mimic for Arg-Gly-Asp. J Med Chem. 1994;37:2537-2551.
Google Scholar | Crossref | Medline25. Nachman, R, Leung, L. Complex formation of platelet membrane glycoproteins IIb and IIIa with fibrinogen. J Clin Invest. 1982;69:263-269.
Google Scholar | Crossref | Medline | ISI26. Scarborough, RM, Rose, JW, Hsu, MA, et al. Barbourin. A GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. J Biol Chem. 1991;266:9359-9362.
Google Scholar | Crossref | Medline | ISI27. Scarborough, R, Kleiman, N, Phillips, D. Platelet glycoprotein IIb/IIIa antagonists. What are the relevant issues concerning their pharmacology and clinical use? Circulation. 1999;100:437-444.
Google Scholar | Crossref | Medline | ISI28. Scarborough, R. Development of eptifibatide. Am Heart J. 1999;138:1093-1104.
Google Scholar | Crossref | Medline29. Markwardt, F. Untersuchungen uber Hirudin. Die Naturwissenschaften. 1955;42:537-538.
Google Scholar | Crossref30. Bagdy, D, Barabas, E, Gráf, L, Petersen, TE, Magnusson, S., Hirudin. Methods Enzymol. 1976;45:669-678.
Google Scholar | Crossref | Medline31. Lee, C, Ansell, J. Direct thrombin inhibitors. Br J Clin Pharmacol. 2011;72:581-592.
Google Scholar | Crossref | Medline | ISI32. Theodore, E . Heparin-induced thrombocytopenia. In: Kitchens, CS, Kessler, CM, Konkle, BA, eds. Consultative Haemostasis and Thrombosis. 3rd ed. Elsevier; 2013:442-473.
Google Scholar33. Bittl, J, Chaitman, B, Feit, F, Kimball, W, Topol, E. Bivalirudin versus heparin during coronary angioplasty for unstable or postinfarction angina: final report reanalysis of the Bivalirudin Angioplasty Study. Am Heart J. 2001;142:952-959.
Google Scholar | Crossref | Medline | ISI34. Wang, Y, Zhao, HW, Wang, CF, et al. Efficacy and safety of bivalirudin during percutaneous coronary intervention in high-bleeding-risk elderly patients with chronic total occlusion: a prospective randomized controlled trial. Catheter Cardiovasc Interv. 2019;93:825-831.
Google Scholar | Crossref | Medline35. Huang, X, Chen, S, Redfors, B, et al. Safety and efficacy of bivalirudin monotherapy in patients with non-ST-segment elevation acute coronary syndromes with positive biomarkers undergoing percutaneous coronary intervention. Coron Artery Dis. 2020;31:59-65.
Google Scholar | Crossref | Medline36. Stocker, K, Barlow, GH. The coagulant enzyme from Bothrops atrox venom (batroxobin). Methods Enzymol. 1976;45:214-223.
Google Scholar | Crossref | Medline37. Itoh, N, Tanaka, N, Funakoshi, I, Kawasaki, T. The complete nucleotide sequence of the gene for batroxobin, a thrombin-like snake venom enzyme. Nucleic Acids Res. 1988;16:10377-10378.
Google Scholar | Crossref | Medline38. Holleman, WH, Weiss, LJ. The thrombin-like enzyme from Bothrops atrox snake venom. Properties of the enzyme purified by affinity chromatography on p-amino benzamidine-substituted agarose. J Biochem. 1976;251:1663-1669.
Google Scholar39. Aronson, D. Comparison of the actions of thrombin and the thrombin-like venom enzymes ancrod and batroxobin. Thromb Haemost. 1976;36:9-13.
Google Scholar | Crossref | Medline40. Xu, G, Liu, X, Zhu, W, Yin, Q, Zhang, R, Fan, X. Feasibility of treating hyperfibrino-genemia with intermittently administered batroxobin in patients with ischemic stroke/transient ischemic attack for secondary prevention. Blood Coagul Fibrinolysis. 2007;18:193-197.
Google Scholar | Crossref | Medline41. Ding, J, Zhou, D, Hu, Y, et al. The efficacy and safety of Batroxobin in combination with anticoagulation on cerebral venous sinus thrombosis. J Thromb Thrombolysis. 2018;46:371-378.
Google Scholar | Crossref | Medline42. Bastos, EMAF, Heneine, LGD, Pesquero, JL, Merlo, LA. Pharmaceutical composition containing an Apitoxin fraction and use thereof. WO/2011/041865 patent application. 2011.
Google Scholar43. Bordon, K, Cologna, C, Fornari-Baldo, E, et al. From animal poisons and venoms to medicines: achievements, challenges and perspectives in drug discovery. Front Pharmacol. 2020;11:1132.
Google Scholar | Crossref | Medline44. ClinicalTrials.gov, Christopher MH . Apitox, honeybee toxin for pain and inflammation of osteoarthritis. National Library of Medicine (US) Identi-fier [NCT01112722]. 2016. Accessed August 12, 2020. https://clinicaltrials.gov/ct2/show/NCT01112722
Google Scholar45. ClinicalTrials.gov, Christopher MH . Evaluate safety and efficacy of apitox add-on therapy for improving disability and quality of life in MS patients. National Library of Medicine (US). Identifier [NCT03710655]. 2018. Accessed August 12, 2020 https://clinicaltrials.gov/ct2/show/NCT03710655
Google Scholar46. Chang, L, Chou, Y, Lin, S, et al. A novel neurotoxin, cobrotoxin b, from Naja naja atra (Taiwan cobra) venom: purification, characterization, and gene organization. J Biochem. 1997;122:1252-1259.
Google Scholar | Crossref | Medline47. Gazerani, P, Cairns, B. Venom-based biotoxins as potential analgesics. Expert Rev Neurother. 2014;14:1261-1274.
Google Scholar | Crossref | Medline48. Xu, J, Song, S, Feng, F, et al. Cobrotoxin-containing analgesic compound to treat chronic moderate to severe cancer pain: results from a randomized, double-blind, cross-over study and from an open-label study. Oncol Rep. 2006;16:1077-1084.
Google Scholar | Medline | ISI49. Zhu, Q, Huang, J, Wang, S, Qin, Z, Lin, F. Cobrotoxin extracted from Naja atra venom relieves arthritis symptoms through anti-inflammation and immunosuppression effects in rat arthritis model. J Ethnopharmacol. 2016;194:1087-1095.
Google Scholar | Crossref | Medline50. China Approval no. H53022101 . Yunnan Nanzhao Pharmaceutical Co., Ltd.
Google Scholar51. Chen, C, Hu, Y, Shi, X, et al. A single-label fluorescent derivatization method for quantitative determination of neurotoxin in vivo by capillary electrophoresis coupled with laser-induced fluorescence detection. Analyst. 2016;141:4495-4501.
Google Scholar | Crossref | Medline52. Nauck, M, Stöckmann, F, Ebert, R, Creutzfeldt, W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia. 1986;29:46-52.
Google Scholar |

留言 (0)

沒有登入
gif