Pleiotropic Benefits of DPP-4 Inhibitors Beyond Glycemic Control

1. Hu, FB. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care. 2011;34:1249-1257.
Google Scholar | Crossref | Medline | ISI2. Morrish, NJ, Wang, SL, Stevens, LK, Fuller, JH, Keen, H. Mortality and causes of death in the WHO multinational study of vascular disease in Diabetes. Diabetologia. 2001;44 Suppl 2:S14-S21.
Google Scholar | Crossref3. Boer, GA, Holst, JJ. Incretin hormones and type 2 diabetes-mechanistic insights and therapeutic approaches. Biology. 2020;9:16.
Google Scholar | Crossref4. Nathan, DM . Finding new treatments for diabetes–how many, how fast . . . How good? N Engl J Med. 2007;356:437-440.
Google Scholar | Crossref | Medline | ISI5. Russell, S. Incretin-based therapies for type 2 diabetes mellitus: a review of direct comparisons of efficacy, safety and patient satisfaction. Int J Clin Pharm. 2013;35:159-172.
Google Scholar | Crossref | Medline6. Drucker, DJ, Nauck, MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368:1696-1705.
Google Scholar | Crossref | Medline | ISI7. Aroor, AR, Sowers, JR, Jia, G, DeMarco, VG. Pleiotropic effects of the dipeptidylpeptidase-4 inhibitors on the cardiovascular system. Am J Physiol Heart Circ Physiol. 2014;307:H477-H492.
Google Scholar | Crossref | Medline8. Fadini, GP, Avogaro, A. Cardiovascular effects of DPP-4 inhibition: beyond GLP-1. Vasc Pharmacol. 2011;55:10-16.
Google Scholar | Crossref | Medline | ISI9. Hasegawa, Y, Hayashi, K, Takemoto, Y, et al. DPP-4 inhibition with linagliptin ameliorates the progression of premature aging in klotho-/- mice. Cardiovasc Diabetol. 2017;16:154.
Google Scholar | Crossref | Medline10. Chen, Z, Yu, J, Fu, M, et al. Dipeptidyl peptidase-4 inhibition improves endothelial senescence by activating AMPK/SIRT1/Nrf2 signaling pathway. Biochem Pharmacol. 2020;177:113951.
Google Scholar | Crossref | Medline11. Xin, M, Jin, X, Cui, X, et al. Dipeptidyl peptidase-4 inhibition prevents vascular aging in mice under chronic stress: modulation of oxidative stress and inflammation. Chem Biol Interact. 2019;314:108842.
Google Scholar | Crossref | Medline12. Hopsu-Havu, VK, Glenner, GG. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie. 1966;7:197-201.
Google Scholar | Crossref | Medline13. McCaughan, GW, Wickson, JE, Creswick, PF, Gorrell, MD. Identification of the bile canalicular cell surface molecule GP110 as the ectopeptidase dipeptidyl peptidase IV: an analysis by tissue distribution, purification and N-terminal amino acid sequence. Hepatology. 1990;11:534-544.
Google Scholar | Crossref | Medline | ISI14. Ulmer, AJ, Mattern, T, Feller, AC, Heymann, E, Flad, HD. CD26 antigen is a surface dipeptidyl peptidase IV (DPPIV) as characterized by monoclonal antibodies clone TII-19-4-7 and 4EL1C7. Scand J Immunol. 1990;31:429-435.
Google Scholar | Crossref | Medline15. Vivier, I, Marguet, D, Naquet, P, et al. Evidence that thymocyte-activating molecule is mouse CD26 (dipeptidyl peptidase IV). J Immunol. 1991;147:447-454.
Google Scholar | Medline16. Drucker, DJ. Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes: preclinical biology and mechanisms of action. Diabetes Care. 2007;30:1335-1343.
Google Scholar | Crossref | Medline | ISI17. Kirby, M, Yu, DM, O’Connor, S, Gorrell, MD. Inhibitor selectivity in the clinical application of dipeptidyl peptidase-4 inhibition. Clin Sci. 2009;118:31-41.
Google Scholar | Crossref | Medline18. Lambeir, AM, Durinx, C, Scharpé, S, De Meester, I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci. 2003;40:209-294.
Google Scholar | Crossref | Medline | ISI19. Gorrell, MD, Gysbers, V, McCaughan, GW. CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand J Immunol. 2001;54:249-264.
Google Scholar | Crossref | Medline20. Deacon, CF, Johnsen, AH, Holst, JJ. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab. 1995;80:952-957.
Google Scholar | Medline | ISI21. Deacon, CF. Circulation and degradation of GIP and GLP-1. Horm Metab Res. 2004;36:761-765.
Google Scholar | Crossref | Medline | ISI22. Campbell, JE, Drucker, DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17:819-837.
Google Scholar | Crossref | Medline | ISI23. Nikolaidis, LA, Elahi, D, Shen, YT, Shannon, RP. Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2005;289:H2401-H2408.
Google Scholar | Crossref | Medline | ISI24. Ban, K, Noyan-Ashraf, MH, Hoefer, J, Bolz, SS, Drucker, DJ, Husain, M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008;117:2340-2350.
Google Scholar | Crossref | Medline | ISI25. Tomas, E, Wood, JA, Stanojevic, V, Habener, JF. Glucagon-like peptide-1(9-36)amide metabolite inhibits weight gain and attenuates diabetes and hepatic steatosis in diet-induced obese mice. Diabetes Obes Metab. 2011;13:26-33.
Google Scholar | Crossref | Medline26. Marguet, D, Baggio, L, Kobayashi, T, et al. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc Natl Acad Sci USA. 2000;97:6874-6879.
Google Scholar | Crossref | Medline | ISI27. Karagiannis, T, Paschos, P, Paletas, K, Matthews, DR, Tsapas, A. Dipeptidyl peptidase-4 inhibitors for treatment of type 2 diabetes mellitus in the clinical setting: systematic review and meta-analysis. BMJ. 2012;344:e1369.
Google Scholar | Crossref | Medline28. Fadini, GP, Albiero, M, Menegazzo, L, de Kreutzenberg, SV, Avogaro, A. The increased dipeptidyl peptidase-4 activity is not counteracted by optimized glucose control in type 2 diabetes, but is lower in metformin-treated patients. Diabetes Obes Metab. 2012;14:518-522.
Google Scholar | Crossref | Medline | ISI29. Patel, BD, Ghate, MD. Recent approaches to medicinal chemistry and therapeutic potential of dipeptidyl peptidase-4 (DPP-4) inhibitors. Eur J Med Chem. 2014;74:574-605.
Google Scholar | Crossref | Medline30. Kim, SH, Yoo, JH, Lee, WJ, Park, CY. Gemigliptin: an update of its clinical use in the management of type 2 Diabetes mellitus. Diabetes Metab J. 2016;40:339-353.
Google Scholar | Crossref | Medline31. Mulvihill, EE, Drucker, DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev. 2014;35:992-1019.
Google Scholar | Crossref | Medline32. Nagasawa, T. A chemokine, SDF-1/PBSF, and its receptor, CXC chemokine receptor 4, as mediators of hematopoiesis. Int J Hematol. 2000;72:408-411.
Google Scholar | Medline | ISI33. Iwata, S, Yamaguchi, N, Munakata, Y, et al. CD26/dipeptidyl peptidase IV differentially regulates the chemotaxis of T cells and monocytes toward RANTES: possible mechanism for the switch from innate to acquired immune response. Int Immunol. 1999;11:417-426.
Google Scholar | Crossref | Medline34. Matheeussen, V, Waumans, Y, Martinet, W, et al. Dipeptidyl peptidases in atherosclerosis: expression and role in macrophage differentiation, activation and apoptosis. Basic Res Cardiol. 2013;108:350.
Google Scholar | Crossref | Medline35. Christopherson, Kw, Hangoc, G, Broxmeyer, HE. Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol. 2002;169:7000-7008.
Google Scholar | Crossref | Medline | ISI36. Shioda, T, Kato, H, Ohnishi, Y, et al. Anti-HIV-1 and chemotactic activities of human stromal cell-derived factor 1alpha (SDF-1alpha) and SDF-1beta are abolished by CD26/dipeptidyl peptidase IV-mediated cleavage. Proc Natl Acad Sci USA. 1998;95:6331-6336.
Google Scholar | Crossref | Medline37. Zaruba, MM, Theiss, HD, Vallaster, M, et al. Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell. 2009;4:313-323.
Google Scholar | Crossref | Medline | ISI38. Lataillade, JJ, Domenech, J, Le Bousse-Kerdiles, MC. Stromal cell-derived factor-1 (SDF-1)\CXCR4 couple plays multiple roles on haematopoietic progenitors at the border between the old cytokine and new chemokine worlds: survival, cell cycling and trafficking. Eur Cytokine Netw. 2004;15:177-188.
Google Scholar | Medline39. De La Luz Sierra, M, Gasperini, P, McCormick, PJ, Zhu, J, Tosato, G. Transcription factor Gfi-1 induced by G-CSF is a negative regulator of CXCR4 in myeloid cells. Blood. 2007;110:2276-2285.
Google Scholar | Crossref | Medline40. Broxmeyer, HE, Hangoc, G, Cooper, S, Campbell, T, Ito, S, Mantel, C. AMD3100 and CD26 modulate mobilization, engraftment, and survival of hematopoietic stem and progenitor cells mediated by the SDF-1/CXCL12-CXCR4 axis. Ann N Y Acad Sci. 2007;1106:1-19.
Google Scholar | Crossref | Medline | ISI41. Theiss, HD, Brenner, C, Engelmann, MG, et al. Safety and efficacy of SITAgliptin plus GRanulocyte-colony-stimulating factor in patients suffering from acute myocardial infarction (SITAGRAMI-Trial)–rationale, design and first interim analysis. Int J Cardiol. 2010;145:282-284.
Google Scholar | Crossref | Medline42. Theiss, HD, Vallaster, M, Rischpler, C, et al. Dual stem cell therapy after myocardial infarction acts specifically by enhanced homing via the SDF-1/CXCR4 axis. Stem Cell Res. 2011;7:244-255.
Google Scholar | Crossref | Medline43. Marfella, R, Sasso, FC, Rizzo, MR, et al. Dipeptidyl peptidase 4 inhibition may facilitate healing of chronic foot ulcers in patients with type 2 diabetes. Exp Diabetes Res. 2012;2012:892706.
Google Scholar | Crossref | Medline44. Long, M, Cai, L, Li, W, et al. DPP-4 inhibitors improve diabetic wound healing via direct and indirect promotion of epithelial-mesenchymal transition and reduction of scarring. Diabetes. 2018;67:518-531.
Google Scholar | Medline45. Takabatake, Y, Sugiyama, T, Kohara, H, et al. The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature. J Am Soc Nephrol. 2009;20:1714-1723.
Google Scholar | Crossref | Medline46. Lotan, D, Sheinberg, N, Kopolovic, J, Dekel, B. Expression of SDF-1/CXCR4 in injured human kidneys. Pediatr Nephrol. 2008;23:71-77.
Google Scholar | Crossref | Medline | ISI47. Tögel, F, Isaac, J, Hu, Z, Weiss, K, Westenfelder, C. Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int. 2005;67:1772-1784.

留言 (0)

沒有登入
gif