1.
Husebye, ES, Anderson, MS, Kämpe, O. Autoimmune polyendocrine syndromes. N Engl J Med. 2018;378:1132-1141.
Google Scholar |
Crossref |
Medline2.
Cutolo, M . Autoimmune polyendocrine syndromes. Autoimmun Rev. 2014;13: 85-89.
Google Scholar |
Crossref |
Medline |
ISI3.
Jamee, M, Alaei, MR, Mesdaghi, M, et al. The prevalence of selective and partial immunoglobulin a deficiency in patients with autoimmune polyendocrinopathy. Immunol Invest. Published online January 12, 2021. doi:
10.1080/08820139.2021.1872615 Google Scholar |
Crossref |
Medline4.
Kahaly, GJ, Frommer, L. Polyglandular autoimmune syndromes. J Endocrinol Invest. 2018;41: 91-98.
Google Scholar |
Crossref |
Medline5.
Erichsen, MM, Løvås, K, Skinningsrud, B, et al. Clinical, immunological, and genetic features of autoimmune primary adrenal insufficiency: observations from a Norwegian registry. J Clin Endocrinol Metab. 2009;94:4882-4890.
Google Scholar |
Crossref |
Medline |
ISI6.
Dittmar, M, Kahaly, GJ. Genetics of the autoimmune polyglandular syndrome type 3 variant. Thyroid. 2010;20:737-743.
Google Scholar |
Crossref |
Medline7.
Flesch, BK, Matheis, N, Alt, T, Weinstock, C, Bux, J, Kahaly, GJ. HLA class II haplotypes differentiate between the adult autoimmune polyglandular syndrome types II and III. J Clin Endocrinol Metab. 2014;99:E177-E182.
Google Scholar |
Crossref |
Medline8.
Van der Auwera, GA, O’Connor, BD. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra. 1st ed. O’Reilly Media; 2020.
Google Scholar9.
Wang, K, Li, M, Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.
Google Scholar |
Crossref |
Medline |
ISI10.
Sherry, ST, Ward, MH, Kholodov, M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308-311.
Google Scholar |
Crossref |
Medline |
ISI11.
Karczewski, KJ, Francioli, LC, Tia, G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans [published correction appears in Nature. 2021 Feb;590(7846):E53]. Nature. 2020;581(7809):434-443.
Google Scholar12.
Fairley, S, Lowy-Gallego, E, Perry, E, Flicek, P. The International Genome Sample Resource (IGSR) collection of open human genomic variation resources. Nucleic Acids Res. 2020;48(D1):D941-D947.
Google Scholar13.
Landrum, MJ, Lee, JM, Benson, M, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062-D1067.
Google Scholar14.
Liu, X, Wu, C, Li, C, Boerwinkle, E. dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs. Hum Mutat. 2016;37:235-241.
Google Scholar |
Crossref |
Medline15.
Cheng, J, Nguyen, TYD, Cygan, KJ, et al. MMSplice: modular modeling improves the predictions of genetic variant effects on splicing. Genome Biol. 2019;20:48.
Google Scholar |
Crossref |
Medline16.
Xiong, HY, Alipanahi, B, Lee, LJ, et al. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science. 2015;347:1254806.
Google Scholar |
Crossref |
Medline |
ISI17.
Castillo-Fernandez, JE, Spector, TD, Bell, JT. Epigenetics of discordant monozygotic twins: implications for disease. Genome Med. 2014;6:60.
Google Scholar |
Crossref |
Medline18.
Ramos, PS, Criswell, LA, Moser, KL, et al. A comprehensive analysis of shared loci between systemic lupus erythematosus (SLE) and sixteen autoimmune diseases reveals limited genetic overlap PLoS Genet. 2011;7:1002406.
Google Scholar |
Crossref |
ISI19.
Albers, HM, Reinards, TH, Brinkman, DM, et al. Genetic variation in VTCN1 (B7-H4) is associated with course of disease in juvenile idiopathic arthritis Ann Rheum Dis. 2014;73:1198-1201.
Google Scholar |
Crossref |
Medline20.
Daha, NA, Lie, BA, Trouw, LA, et al. Novel genetic association of the VTCN1 region with rheumatoid arthritis Ann Rheum Dis. 2012;71:567-571.
Google Scholar |
Crossref |
Medline21.
Radichev, IA, Maneva-Radicheva, LV, Amatya, C, et al. Loss of peripheral protection in pancreatic islets by proteolysis-driven impairment of VTCN1 (B7-H4) presentation is associated with the development of autoimmune diabetes. J Immunol. 2016;196:1495-1506.
Google Scholar |
Crossref |
Medline22.
Smith, KG, Clatworthy, MR. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol. 2010;10:328-343.
Google Scholar |
Crossref |
Medline |
ISI23.
Verbeek, JS, Hirose, S, Nishimura, H. The complex association of FcγRIIb with autoimmune susceptibility. Front Immunol. 2019;10:2061.
Google Scholar |
Crossref |
Medline24.
Park, JH, Lee, KH, Jeon, B, et al. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome: a systematic review. Autoimmun Rev. 2020;19:102526.
Google Scholar |
Crossref |
Medline25.
Alkhairy, OK, Abolhassani, H, Rezaei, N, et al. Spectrum of phenotypes associated with mutations in LRBA. J Clin Immunol. 2016;36:33-45.
Google Scholar |
Crossref |
Medline26.
Charbonnier, LM, Janssen, E, Chou, J, et al. Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J Allergy Clin Immunol. 2015;135:217-227.
Google Scholar |
Crossref |
Medline27.
Sterlin, D, Velasco, G, Moshous, D, et al. Genetic, cellular and clinical features of ICF syndrome: a French national survey. J Clin Immunol. 2016;36:149-159.
Google Scholar |
Crossref |
Medline28.
Del Pilar Fortes, M, Tassinari, P, Machado, I. CTLA-4, ICOS, PD1 and PTPN22 gene polymorphisms and susceptibility to autoimmune hepatitis type 1. Int J Immunol 2017;5:66-73.
Google Scholar |
Crossref29.
Velaga, MR, Wilson, V, Jennings, CE, et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J Clin Endocrinol Metab. 2004;89:5862-5865.
Google Scholar |
Crossref |
Medline |
ISI30.
Ge, Y, Onengut-Gumuscu, S, Quinlan, AR, et al. Targeted deep sequencing in multiple-affected sibships of European ancestry identifies rare deleterious variants in PTPN22 that confer risk for type 1 diabetes. Diabetes. 2016;65:794-802.
Google Scholar31.
Wolff, AS, Mitchell, AL, Cordell, HJ, et al. CTLA-4 as a genetic determinant in autoimmune Addison’s disease. Genes Immun. 2015;16:430-436.
Google Scholar |
Crossref |
Medline32.
Ting, WH, Chien, MN, Lo, FS, et al. Association of cytotoxic T-lymphocyte-associated protein 4 (CTLA4) gene polymorphisms with autoimmune thyroid disease in children and adults: case-control study. PLoS One. 2016;11:e0154394.
Google Scholar |
Crossref |
Medline33.
Mitchell, AL, Macarthur, KD, Gan, EH, et al. Association of autoimmune Addison’s disease with alleles of STAT4 and GATA3 in European cohorts. PLoS One. 2014;9:e88991.
Google Scholar |
Crossref |
Medline34.
Korman, BD, Kastner, DL, Gregersen, PK, Remmers, EF. STAT4: genetics, mechanisms, and implications for autoimmunity. Curr Allergy Asthma Rep. 2008;8:398-403.
Google Scholar |
Crossref |
Medline35.
Li, C, Zhao, L, Wang, W, Li, H, Meng, X, Chen, S. STAT4 rs7574865 polymorphism contributes to the risk of type 1 diabetes: a meta analysis. Int J Clin Exp Med. 2015;8:2471-2475.
Google Scholar |
Medline36.
Yan, N, Meng, S, Zhou, J, et al. Association between STAT4 gene polymorphisms and autoimmune thyroid diseases in a Chinese population. Int J Mol Sci. 2014;15:12280-12293.
Google Scholar |
Crossref |
Medline37.
Ghaderi, M, Gambelunghe, G, Tortoioli, C, et al. MHC2TA single nucleotide polymorphism and genetic risk for autoimmune adrenal insufficiency. J Clin Endocrinol Metab. 2006;91:4107-4111.
Google Scholar |
Crossref |
Medline38.
Lopez-Vazquez, A, Rodrigo, L, Fuentes, D, et al. MHC class I chain related gene A (MICA) modulates the development of coeliac disease in patients with the high risk heterodimer DQA1*0501/DQB1*0201. Gut. 2002;50:336-340.
Google Scholar |
Crossref |
Medline |
ISI39.
Cho, WK, Jung, MH, Park, SH, et al. Association of MICA alleles with autoimmune thyroid disease in Korean children. Int J Endocrinol. 2012;2012:235680.
Google Scholar |
Crossref |
Medline40.
Muhali, FS, Cai, TT, Zhu, JL, et al. Polymorphisms of CLEC16A region and autoimmune thyroid diseases. G3 (Bethesda). 2014;4:973-977.
Google Scholar |
Crossref |
Medline41.
Mitchell, AL, Cordell, HJ, Soemedi, R, et al. Programmed death ligand 1 (PD-L1) gene variants contribute to autoimmune Addison’s disease and Graves’ disease susceptibility. J Clin Endocrinol Metab. 2009;94:5139-5145.
Google Scholar |
Crossref |
Medline42.
Magitta, NF, Bøe Wolff, AS, Johansson, S, et al. A coding polymorphism in NALP1 confers risk for autoimmune Addison’s disease and type 1 diabetes. Genes Immun. 2009;10:120-124.
Google Scholar |
Crossref |
Medline43.
Napier, C, Mitchell, AL, Gan, E, Wilson, I, Pearce, SHS. Role of the X-linked gene GPR174 in autoimmune Addison’s disease. J Clin Endocrinol Metab. 2015;100:E187-E190.
Google Scholar |
Crossref |
Medline44.
Chistiakov, DA, Chistiakov, AP. Is FCRL3 a new general autoimmunity gene? Hum Immunol. 2007;68:375-383.
Google Scholar |
Crossref |
Medline45.
Owen, CJ, Kelly, H, Eden, JA, Merriman, ME, Pearce, SH, Merriman, TR. Analysis of the Fc receptor-like-3 (FCRL3) locus in Caucasians with autoimmune disorders suggests a complex pattern of disease association. J Clin Endocrinol Metab. 2007;92:1106-1111.
Google Scholar |
Crossref |
Medline46.
Lopez, ER, Zwermann, O, Segni, M, et al. A promoter polymorphism of the CYP27B1 gene is associated with Addison’s disease, Hashimoto’s thyroiditis, Graves’ disease and type 1 diabetes mellitus in Germans. Eur J Endocrinol. 2004;151:193-197.
Google Scholar |
Crossref |
Medline47.
Pani, MA, Knapp, M, Donner, H, et al. Vitamin D receptor allele combinations influence genetic susceptibility to type 1 diabetes in Germans. Diabetes. 2000;49:504-507.
Google Scholar |
Crossref |
Medline48.
Pani, MA, Seissler, J, Usadel, KH, Badenhoop, K. Vitamin D receptor genotype is associated with Addison’s disease. Eur J Endocrinol. 2002;147:635-640.
Google Scholar |
Crossref |
Medline49.
Gao, X-R, Yu, Y-G. Meta-analysis of the association between vitamin D receptor polymorphisms and the risk of autoimmune thyroid disease. Int J Endocrinol. 2018;2018:2846943.
Google Scholar |
Crossref |
Medline
留言 (0)