Right ventricular adaptation in the critical phase after acute intermediate-risk pulmonary embolism

1. Wood, KE. Major pulmonary embolism. Chest 2002; 121: 877–905.
Google Scholar | Crossref | Medline | ISI2. Bĕlohlávek, J, Dytrych, V, Linhart, A. Pulmonary embolism, part I: Epidemiology, risk factors and risk stratification, pathophysiology, clinical presentation, diagnosis and nonthrombotic pulmonary embolism. Exp Clin Cardiol 2013; 18: 129–138.
Google Scholar | Medline3. Konstam, MA, Kiernan, MS, Bernstein, D, et al. Evaluation and management of right-sided heart failure: a scientific statement from the American Heart Association. Circulation 2018; 137: e578–e622.
Google Scholar | Crossref | Medline4. Konstantinides, SV, Meyer, G, Becattini, C, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J 2020; 41: 543–603.
Google Scholar | Crossref | Medline5. Pinsky, MR. The right ventricle: interaction with the pulmonary circulation. Crit Care 2016; 20: 266–269.
Google Scholar | Crossref | Medline6. Ryan, JJ, Archer, SL. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res 2014; 115: 176–188.
Google Scholar | Crossref | Medline | ISI7. Andersen, S, Nielsen-Kudsk, JE, Vonk Noordegraaf, A, et al. Right ventricular fibrosis. Circulation 2019; 139: 269–285.
Google Scholar | Crossref | Medline8. Tsang, JYC, Hogg, JC. Gas exchange and pulmonary hypertension following acute pulmonary thromboembolism: has the emperor got some new clothes yet? Pulm Circ 2014; 4: 220–236.
Google Scholar | SAGE Journals | ISI9. Schultz, J, Andersen, A, Gade, IL, et al. Riociguat, sildenafil and inhaled nitric oxide reduces pulmonary vascular resistance and improves right ventricular function in a porcine model of acute pulmonary embolism. Eur Heart J Acute Cardiovasc Care. Epub ahead of print 26 April 2019. DOI: 10.1177/2048872619840772.
Google Scholar10. Zwissler, B, Welte, M, Habler, O, et al. Effects of inhaled prostacyclin as compared with inhaled nitric oxide in a canine model of pulmonary microembolism and oleic acid edema. J Cardiothorac Vasc Anesth 1995; 9: 634–640.
Google Scholar | Crossref | Medline11. Tsang, JYC, Lamm, WJE. Estimation of Endothelin-mediated vasoconstriction in acute pulmonary thromboembolism. Pulm Circ 2012; 2: 67–74.
Google Scholar | SAGE Journals12. Pagnamenta, A, Fesler, P, Vandinivit, A, et al. Pulmonary vascular effects of dobutamine in experimental pulmonary hypertension. Crit Care Med 2003; 31: 1140–1146.
Google Scholar | Crossref | Medline | ISI13. Neto-Neves, EM, Sousa-Santos, O, Ferraz, KC, et al. Matrix metalloproteinase inhibition attenuates right ventricular dysfunction and improves responses to dobutamine during acute pulmonary thromboembolism. J Cell Mol Med 2013; 17: 1588–1597.
Google Scholar | Crossref | Medline14. Dias-Junior, CA, Souza-Costa, DC, Zerbini, T, et al. The effect of sildenafil on pulmonary embolism-induced oxidative stress and pulmonary hypertension. Anesth Analg 2005; 101: 115–120.
Google Scholar | Crossref | Medline | ISI15. Vonk Noordegraaf, A, Haddad, F, Chin, KM, et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol 2013; 62: D22–D33.
Google Scholar | Crossref | Medline | ISI16. Naeije, R, Brimioulle, S, Dewachter, L. Biomechanics of the right ventricle in health and disease (2013 Grover Conference Series). Pulm Circ 2014; 4: 395–406.
Google Scholar | SAGE Journals | ISI17. Schultz, J, Andersen, A, Gade, IL, et al. A porcine in-vivo model of acute pulmonary embolism. Pulm Circ 2018; 8: 1–9.
Google Scholar | SAGE Journals18. van Hout, GPJ, Jansen of Lorkeers, SJ, Gho, JMIH, et al. Admittance-based pressure-volume loops versus gold standard cardiac magnetic resonance imaging in a porcine model of myocardial infarction. Physiol Rep 2014; 2: e00287.
Google Scholar | Crossref | Medline19. Kutty, S, Kottam, AT, Padiyath, A, et al. Validation of admittance computed left ventricular volumes against real-time three-dimensional echocardiography in the porcine heart. Expl Physiol 2013; 98: 1092–1101.
Google Scholar | Crossref | Medline20. Collins, J-A, Rudenski, A, Gibson, J, et al. Relating oxygen partial pressure, saturation and content: the haemoglobin–oxygen dissociation curve. Breathe 2015; 11: 194–201.
Google Scholar | Crossref | Medline21. Paslawska, U, Noszczyk-Nowak, A, Paslawski, R, et al. Normal electrocardiographic and echocardiographic (M-mode and two-dimensional) values in Polish Landrace pigs. Acta Vet Scand 2014; 56: 54.
Google Scholar | Crossref | Medline22. Huval, WV, Mathieson, MA, Stemp, LI, et al. Therapeutic benefits of 5-hydroxytryptamine inhibition following pulmonary embolism. Ann Surg 1983; 197: 220–225.
Google Scholar | Crossref | Medline | ISI23. Lee, JH, Chun, YG, Lee, IC, et al. Pathogenic role of endothelin 1 in hemodynamic dysfunction in experimental acute pulmonary thromboembolism. Am J Respir Crit Care Med 2001; 164: 1282–1287.
Google Scholar | Crossref | Medline | ISI24. Duranceau, A, Jamieson, GG, Jones, RH, et al. An experimental model of pulmonary embolism. J Surg Res 1979; 26: 33–44.
Google Scholar | Crossref | Medline25. Velásquez, DRB, Teixeira-Neto, FJ, Lagos-Carvajal, AP, et al. Effects of different inspired oxygen fractions on sildenafil-induced pulmonary anti-hypertensive effects in a sheep model of acute pulmonary embolism. Life Sci 2015; 127: 26–31.
Google Scholar | Crossref | Medline26. Zhao, L-B, Jia, Z-Y, Lu, G-D, et al. Establishment of a canine model of acute pulmonary embolism with definite right ventricular dysfunction through introduced autologous blood clots. Thromb Res 2015; 135: 727–732.
Google Scholar | Crossref | Medline27. Tsang, JYC, Lamm, WJE, Neradilek, B, et al. Endothelin receptor blockade does not improve hypoxemia following acute pulmonary thromboembolism. J Appl Physiol 2007; 102: 762–771.
Google Scholar | Crossref | Medline | ISI28. Ghuysen, A, Lambermont, B, Dogné, J-M, et al. Effect of BM-573 [N-terbutyl-N’-[2-(4’-methylphenylamino)-5-nitro-benzenesulfonyl]urea], a dual thromboxane synthase inhibitor and thromboxane receptor antagonist, in a porcine model of acute pulmonary embolism. J Pharmacol Exp Ther 2004; 310: 964–972.
Google Scholar | Crossref | Medline29. Ghuysen, A, Lambermont, B, Kolh, P, et al. Alteration of right ventricular-pulmonary vascular coupling in a porcine model of progressive pressure overloading. Shock 2008; 29: 197–204.
Google Scholar | Medline | ISI30. Bellofiore, A, Roldán-Alzate, A, Besse, M, et al. Impact of acute pulmonary embolization on arterial stiffening and right ventricular function in dogs. Ann Biomed Eng 2013; 41: 195–204.
Google Scholar | Crossref | Medline | ISI31. Kerbaul, F, Gariboldi, V, Giorgi, R, et al. Effects of levosimendan on acute pulmonary embolism-induced right ventricular failure. Crit Care Med 2007; 35: 1948–1954.
Google Scholar | Crossref | Medline | ISI32. Alpert, JS, Haynes, FW, Dalen, JE, et al. Experimental pulmonary embolism; effect on pulmonary blood volume and vascular compliance. Circulation 1974; 49: 152–157.
Google Scholar | Crossref | Medline33. Prewitt, RM, Downes, AMT, Gu, S, et al. Effects of hydralazine and increased cardiac output on recombinant tissue plasminogen activator-induced thrombolysis in canine pulmonary embolism*. Chest 1991; 99: 708–714.
Google Scholar | Crossref | Medline34. Tanaka, H, Tajimi, K, Moritsune, O, et al. Effects of milrinone on pulmonary vasculature in normal dogs and in dogs with pulmonary hypertension. Crit Care Med 1991; 19: 68–74.
Google Scholar | Crossref | Medline35. Dias-Junior, CA, Neto-Neves, EM, Montenegro, MF, et al. Hemodynamic effects of inducible nitric oxide synthase inhibition combined with sildenafil during acute pulmonary embolism. Nitric Oxide 2010; 23: 284–288.
Google Scholar | Crossref | Medline36. Kerbaul, F, By, Y, Gariboldi, V, et al. Acute pulmonary embolism decreases adenosine plasma levels in anesthetized pigs. ISRN Cardiol 2011; 2011: 1–6.
Google Scholar | Crossref37. Lyhne, MD, Kline, JA, Nielsen-Kudsk, JE, et al. Pulmonary vasodilation in acute pulmonary embolism – a systematic review. Pulm Circ 2020; 10: 1–16.
Google Scholar | SAGE Journals38. Kramer, A, Mortensen, CS, Schultz, JG, et al. Inhaled nitric oxide has pulmonary vasodilator efficacy both in the immediate and prolonged phase of acute pulmonary embolism. Eur Heart J Acute Cardiovasc Care. Epub ahead of print 2020. DOI: 10.1177/2048872620918713.
Google Scholar39. Roehl, AB, Steendijk, P, Baumert, JH, et al. Comparison of 3 methods to induce acute pulmonary hypertension in pigs. Comp Med 2009; 59: 280–286.
Google Scholar | Medline | ISI40. Böttiger, BW, Motsch, J, Dörsam, J, et al. Inhaled nitric oxide selectively decreases pulmonary artery pressure and pulmonary vascular resistance following acute massive pulmonary microembolism in piglets. Chest 1996; 110: 1041–1047.
Google Scholar | Crossref | Medline | ISI41. Priebe, HJ. Efficacy of vasodilator therapy in canine model of acute pulmonary hypertension. Am J Physiol 1988; 255: H1232–H1239.
Google Scholar | Medline42. Ozsu, S, Abul, Y, Yilmaz, I, et al. Prognostic significance of PaO2/PaCO2 ratio in normotensive patients with pulmonary embolism. Clin Respir J 2011; 6: 104–111.
Google Scholar | Crossref | Medline43. Savel’ev, VS, Tverskaya, MS, Virganskii, AO, et al. Heart rhythm disturbances during the acute period of massive pulmonary embolism. Bull Exp Biol Med 2001; 131: 77–80.
Google Scholar | Crossref | Medline44. Krueger, K, Deissler, P, Coburger, S, et al. How thrombus model impacts the in vitro study of interventional thrombectomy procedures. Invest Radiol 2004; 39: 641–648.
Google Scholar | Crossref | Medline | ISI

留言 (0)

沒有登入
gif