Prognostic role of plasma galectin-3 levels in acute coronary syndrome

1. World Health Organization . Cardiovascular diseases (CVDs), http://www.who.int/mediacentre/factsheets/fs317/en/ (2017, accessed 18 March 2020).
Google Scholar2. Falk, E. Pathogenesis of atherosclerosis. J Am Coll Cardiol 2006; 47: C7–C12.
Google Scholar | Crossref | Medline | ISI3. Antman, EM, Cohen, M, Bernink, PJ, et al. The TIMI risk score for unstable angina/non-ST elevation MI: A method for prognostication and therapeutic decision making. JAMA 2000; 284: 835–842.
Google Scholar | Crossref | Medline | ISI4. de Araujo Goncalves, P, Ferreira, J, Aguiar, C, et al. TIMI, PURSUIT, and GRACE risk scores: Sustained prognostic value and interaction with revascularization in NSTE-ACS. Eur Heart J 2005; 26: 865–872.
Google Scholar | Crossref | Medline | ISI5. Katus, H, Ziegler, A, Ekinci, O, et al. Early diagnosis of acute coronary syndrome. Eur Heart J 2017; 38: 3049–3055.
Google Scholar | Crossref | Medline6. Klingenberg, R, Aghlmandi, S, Raber, L, et al. Improved risk stratification of patients with acute coronary syndromes using a combination of hsTnT, NT-proBNP and hsCRP with the GRACE score. Eur Heart J Acute Cardiovasc Care 2018; 7: 129–138.
Google Scholar | SAGE Journals | ISI7. Noveanu, M, Breidthardt, T, Potocki, M, et al. Direct comparison of serial B-type natriuretic peptide and NT-proBNP levels for prediction of short- and long-term outcome in acute decompensated heart failure. Crit Care 2011; 15: R1.
Google Scholar | Crossref | Medline | ISI8. Morrow, DA, Rifai, N, Antman, EM, et al. C-reactive protein is a potent predictor of mortality independently of and in combination with troponin T in acute coronary syndromes: A TIMI 11A substudy. Thrombolysis in Myocardial Infarction. J Am Coll Cardiol 1998; 31: 1460–1465.
Google Scholar | Crossref | Medline | ISI9. Cannon, CP, McCabe, CH, Wilcox, RG, et al. Association of white blood cell count with increased mortality in acute myocardial infarction and unstable angina pectoris. OPUS-TIMI 16 Investigators. Am J Cardiol 2001; 87: 636–639, A10.
Google Scholar | Crossref | Medline | ISI10. Kumar, A, Cannon, CP. Acute coronary syndromes: Diagnosis and management, part I. Mayo Clin Proc 2009; 84: 917–938.
Google Scholar | Crossref | Medline | ISI11. Clerico, A, Galli, C, Fortunato, A, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as biomarker of acute kidney injury: A review of the laboratory characteristics and clinical evidences. Clin Chem Lab Med 2012; 50: 1505–1517.
Google Scholar | Medline12. Christenson, RH, Duh, SH, Wu, AH, et al. Multi-center determination of galectin-3 assay performance characteristics: Anatomy of a novel assay for use in heart failure. Clin Biochem 2010; 43: 683–690.
Google Scholar | Crossref | Medline | ISI13. Laterza, OF, Price, CP, Scott, MG. Cystatin C: An improved estimator of glomerular filtration rate? Clin Chem 2002; 48: 699–707.
Google Scholar | Crossref | Medline | ISI14. World Medical Association . World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013; 310: 2191–2194.
Google Scholar | Crossref | Medline | ISI15. International Council for Harmonisation of Technical Require-ments for Pharmaceuticals for Human Use (ICH) . ICH harmonised guideline. Integrated addendum to ICH E6(R1): Guideline for good clinical practice E6(R2), http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E6/E6_R2__Step_4.pdf (2016, accessed 18 March 2020).
Google Scholar16. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use . ICH harmonised tripartite guideline. Guideline for good clinical practice E6(R1), http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E6/E6_R1_Guideline.pdf (1996, accessed 18 March 2020).
Google Scholar17. Li, XS, Obeid, S, Klingenberg, R, et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: A prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 2017; 38: 814–824.
Google Scholar | Medline | ISI18. Laterza, OF, Price, CP, Scott, MG. Cystatin C: An improved estimator of glomerular filtration rate? Clin Chem 2002; 48: 699–707.
Google Scholar | Crossref | Medline | ISI19. Larsson, A, Malm, J, Grubb, A, et al. Calculation of glomerular filtration rate expressed in mL/min from plasma cystatin C values in mg/L. Scand J Clin Lab Invest 2004; 64: 25–30.
Google Scholar | Crossref | Medline | ISI20. Shimizu-Tokiwa, A, Kobata, M, Io, H, et al. Serum cystatin C is a more sensitive marker of glomerular function than serum creatinine. Nephron 2002; 92: 224–226.
Google Scholar | Crossref | Medline21. Milner, TD, Viner, AC, MacKinnon, AC, et al. Temporal expression of galectin-3 following myocardial infarction. Acta Cardiol 2014; 69: 595–602.
Google Scholar | Crossref | Medline22. Martin-Reyes, R, Franco-Pelaez, JA, Lorenzo, O, et al. Plasma levels of monocyte chemoattractant protein-1, n-terminal fragment of brain natriuretic peptide and calcidiol are independently associated with the complexity of coronary artery disease. PLoS One 2016; 11: e0152816.
Google Scholar | Crossref | Medline23. Silva, D, Cortez-Dias, N, Jorge, C, Marques, JS, et al. Cystatin C as prognostic biomarker in ST-segment elevation acute myocardial infarction. Am J Cardiol 2012; 109: 1431–1438.
Google Scholar | Crossref | Medline | ISI24. Akcay, AB, Ozlu, MF, Sen, N, et al. Prognostic significance of neutrophil gelatinase-associated lipocalin in ST-segment elevation myocardial infarction. J Investig Med 2012; 60: 508–513.
Google Scholar | Crossref | Medline25. Ho, JE, Liu, C, Lyass, A, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol 2012; 60: 1249–1256.
Google Scholar | Crossref | Medline | ISI26. Dumic, J, Dabelic, S, Flogel, M. Galectin-3: An open-ended story. Biochim Biophys Acta 2006; 1760: 616–635.
Google Scholar | Crossref | Medline | ISI27. Hashmi, S, Al-Salam, S. Galectin-3 is expressed in the myocardium very early post-myocardial infarction. Cardiovasc Pathol 2015; 24: 213–223.
Google Scholar | Crossref | Medline28. Nachtigal, M, Al-Assaad, Z, Mayer, EP, et al. Galectin-3 expression in human atherosclerotic lesions. Am J Pathol 1998; 152: 1199–1208.
Google Scholar | Medline | ISI29. Lisowska, A, Knapp, M, Tycinska, A, et al. Predictive value of Galectin-3 for the occurrence of coronary artery disease and prognosis after myocardial infarction and its association with carotid IMT values in these patients: A mid-term prospective cohort study. Atherosclerosis 2016; 246: 309–317.
Google Scholar | Crossref | Medline30. Agnello, L, Bivona, G, Lo Sasso, B, et al. Galectin-3 in acute coronary syndrome. Clin Biochem 2017; 50: 797–803.
Google Scholar | Crossref | Medline31. Singsaas, EG, Manhenke, CA, Dickstein, K, et al. Circulating galectin-3 levels are increased in patients with ischemic heart disease, but are not influenced by acute myocardial infarction. Cardiology 2016; 134: 398–405.
Google Scholar | Crossref | Medline32. de Boer, RA, Lok, DJ, Jaarsma, T, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med 2011; 43: 60–68.
Google Scholar | Crossref | Medline | ISI33. MacKinnon, AC, Farnworth, SL, Hodkinson, PS, et al. Regulation of alternative macrophage activation by galectin-3. J Immunol 2008; 180: 2650–2658.
Google Scholar | Crossref | Medline | ISI34. Arar, C, Gaudin, JC, Capron, L, et al. Galectin-3 gene (LGALS3) expression in experimental atherosclerosis and cultured smooth muscle cells. FEBS Lett 1998; 430: 307–311.
Google Scholar | Crossref | Medline35. Agnello, L, Bivona, G, Lo Sasso, B, et al. Galectin-3 in acute coronary syndrome. Clin Biochem 2017; 501: 797–803.
Google Scholar | Crossref36. Tian, L, Chen, K, Cao, J, et al. Galectin-3-induced oxidized low-density lipoprotein promotes the phenotypic transformation of vascular smooth muscle cells. Mol Med Rep 2015; 12: 4995–5002.
Google Scholar | Crossref | Medline37. Sun, TW, Xu, QY, Yao, HM, et al. The predictive value of plasma cystatin C for acute coronary syndrome treated with percutaneous coronary intervention. Heart Lung 2012; 41: 456–462.
Google Scholar | Crossref | Medline38. Nachtigal, M, Ghaffar, A, Mayer, EP. Galectin-3 gene inactivation reduces atherosclerotic lesions and adventitial inflammation in ApoE-deficient mice. Am J Pathol 2008; 172: 247–255.
Google Scholar | Crossref | Medline | ISI39. Gucuk Ipek, E, Akin Suljevic, S, Kafes, H, et al. Evaluation of galectin-3 levels in acute coronary syndrome. Ann Cardiol Angeiol (Paris) 2016; 65: 26–30.
Google Scholar | Crossref | Medline40. Gopal, DM, Kommineni, M, Ayalon, N, et al. Relationship of plasma galectin-3 to renal function in patients with heart failure: Effects of clinical status, pathophysiology of heart failure, and presence or absence of heart failure. J Am Heart Assoc 2012; 1: e000760.
Google Scholar | Crossref | Medline | ISI41. Jernberg, T, Lindahl, B, James, S, et al. Cystatin C: a novel predictor of outcome in suspected or confirmed non-ST-elevation acute coronary syndrome. Circulation 2004; 110: 2342–2348.
Google Scholar | Crossref | Medline | ISI42. Hemdahl, AL, Gabrielsen, A, Zhu, C, et al. Expression of neutrophil gelatinase-associated lipocalin in atherosclerosis and myocardial infarction. Arterioscler Thromb Vasc Biol 2006; 26: 136–142.
Google Scholar | Crossref | Medline | ISI43. Zografos, T, Haliassos, A, Korovesis, S, et al. Association of neutrophil gelatinase-associated lipocalin with the severity of coronary artery disease. Am J Cardiol 2009; 104: 917–920.
Google Scholar | Crossref | Medline44. Maisel, AS, Mueller, C, Fitzgerald, R, et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: The NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. Eur J Heart Fail 2011; 13: 846–851.
Google Scholar | Crossref | Medline45. Shrestha, K, Borowski, AG, Troughton, RW, et al. Renal dysfunction is a stronger determinant of systemic neutrophil gelatinase-associated lipocalin levels than myocardial dysfunction in systolic heart failure. J Card Fail 2011; 17: 472–478.
Google Scholar | Crossref | Medline46. Helanova, K, Littnerova, S, Kubena, P, et al. Prognostic impact of neutrophil gelatinase-associated lipocalin and B-type natriuretic in patients with ST-elevation myocardial infarction treated by primary PCI: A prospective observational cohort study. BMJ Open 2015; 5: e006872.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif