Harnessing the Proteostasis Network in Alcohol-associated Liver Disease

1.

Wu D, Cederbaum AI. Alcohol, oxidative stress, and free radical damage. Alcohol Research & Health. 2003;27(4):277–84.

Google Scholar 

2.

•• Mandrekar P, Bataller R, Tsukamoto H, Gao B. Alcoholic hepatitis: translational approaches to develop targeted therapies. Hepatology (Baltimore, Md). 2016;64(4):1343–55. https://doi.org/10.1002/hep.28530. The review elaborates the disease pathophysiology of alcoholic hepatitis and the recent therapeutic approaches.

3.

Morimoto RI. The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol. 2011;76:91–9. https://doi.org/10.1101/sqb.2012.76.010637.

CAS  Article  PubMed  Google Scholar 

4.

•• Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89–102. https://doi.org/10.1038/nrm3270. The review extensively demonstrates the ER stress pathway in maintaining cellular homeostasis.

5.

Baird NA, Turnbull DW, Johnson EA. Induction of the heat shock pathway during hypoxia requires regulation of heat shock factor by hypoxia-inducible factor-1. J Biol Chem. 2006;281(50):38675–81. https://doi.org/10.1074/jbc.M608013200.

CAS  Article  PubMed  Google Scholar 

6.

Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005;10(2):86–103. https://doi.org/10.1379/csc-99r.1.

CAS  Article  PubMed  PubMed Central  Google Scholar 

7.

Ahn SG, Thiele DJ. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev. 2003;17(4):516–28. https://doi.org/10.1101/gad.1044503.

CAS  Article  PubMed  PubMed Central  Google Scholar 

8.

•• Morimoto RI. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 1998;12(24):3788–96. The review extensively discuss the process of cellular homeostasis mediated by HSF1 and molecular chaperones.

9.

• Sarge KD, Murphy SP, Morimoto RI. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol. 1993;13(3):1392–407. https://doi.org/10.1128/mcb.13.3.1392. The review describes the functional regulation and activity of HSF1 and its role in maintaining cellular homeostasis.

10.

Vihervaara A, Sistonen L. HSF1 at a glance. J Cell Sci. 2014;127(Pt 2):261–6. https://doi.org/10.1242/jcs.132605.

CAS  Article  PubMed  Google Scholar 

11.

•• Gomez-Pastor R, Burchfiel ET, Thiele DJ. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol. 2018;19(1):4–19. https://doi.org/10.1038/nrm.2017.73. The functional role of HSF1, its regulation, as well as its role in pathogenesis of disease physiology is well described in this article.

12.

Pernet L, Faure V, Gilquin B, Dufour-Guerin S, Khochbin S, Vourc'h C. HDAC6-ubiquitin interaction controls the duration of HSF1 activation after heat shock. Mol Biol Cell. 2014;25(25):4187–94. https://doi.org/10.1091/mbc.E14-06-1032.

CAS  Article  PubMed  PubMed Central  Google Scholar 

13.

Shamovsky I, Ivannikov M, Kandel ES, Gershon D, Nudler E. RNA-mediated response to heat shock in mammalian cells. Nature. 2006;440(7083):556–60. https://doi.org/10.1038/nature04518.

CAS  Article  PubMed  Google Scholar 

14.

Neef DW, Jaeger AM, Gomez-Pastor R, Willmund F, Frydman J, Thiele DJ. A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1. Cell Rep. 2014;9(3):955–66. https://doi.org/10.1016/j.celrep.2014.09.056.

CAS  Article  PubMed  PubMed Central  Google Scholar 

15.

•• Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet. 1988;22:631–77. https://doi.org/10.1146/annurev.ge.22.120188.003215. In this article characterization of stress chaperones and its role in cellular homeostasis is described in details.

16.

Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem. 2013;82:323–55. https://doi.org/10.1146/annurev-biochem-060208-092442.

CAS  Article  PubMed  Google Scholar 

17.

Ma X, Xu L, Alberobello AT, Gavrilova O, Bagattin A, Skarulis M, et al. Celastrol protects against obesity and metabolic dysfunction through activation of a HSF1-PGC1alpha transcriptional axis. Cell Metab. 2015;22(4):695–708. https://doi.org/10.1016/j.cmet.2015.08.005.

18.

McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem. 1998;273(13):7523–8. https://doi.org/10.1074/jbc.273.13.7523.

CAS  Article  PubMed  Google Scholar 

19.

Jin X, Moskophidis D, Mivechi NF. Heat shock transcription factor 1 is a key determinant of HCC development by regulating hepatic steatosis and metabolic syndrome. Cell Metab. 2011;14(1):91–103. https://doi.org/10.1016/j.cmet.2011.03.025.

CAS  Article  PubMed  PubMed Central  Google Scholar 

20.

Douglas PM, Baird NA, Simic MS, Uhlein S, McCormick MA, Wolff SC, et al. Heterotypic signals from neural HSF-1 separate thermotolerance from longevity. Cell Rep. 2015;12(7):1196–204. https://doi.org/10.1016/j.celrep.2015.07.026.

CAS  Article  PubMed  PubMed Central  Google Scholar 

21.

Muralidharan S, Mandrekar P. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol. 2013;94(6):1167–84. https://doi.org/10.1189/jlb.0313153.

CAS  Article  PubMed  PubMed Central  Google Scholar 

22.

Choudhury AMP. Chaperones in sterile inflammation and injury. In: Asea A, Kaur P, editors. Chaperokine activity of heat shock proteins heat shock proteins, vol 16. Cham: Springer; 2019.

Google Scholar 

23.

•• Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science (New York, NY). 2011;334(6059):1081–6. https://doi.org/10.1126/science.1209038. In this article the authors elaborate the role of ER stress mediated UPR in maintaining cellular homeostasis.

24.

Lemus L, Goder V. Regulation of endoplasmic reticulum-associated protein degradation (ERAD) by ubiquitin. Cells. 2014;3(3):824–47. https://doi.org/10.3390/cells3030824.

CAS  Article  PubMed  PubMed Central  Google Scholar 

25.

•• Dara L, Ji C, Kaplowitz N. The contribution of endoplasmic reticulum stress to liver diseases. Hepatology (Baltimore, Md). 2011;53(5):1752–63. https://doi.org/10.1002/hep.24279. The review elaborates the signifcance of ER stress pathways in liver diseases.

26.

Sicari D, Delaunay-Moisan A, Combettes L, Chevet E, Igbaria A. A guide to assessing endoplasmic reticulum homeostasis and stress in mammalian systems. FEBS J. 2020;287(1):27–42. https://doi.org/10.1111/febs.15107.

CAS  Article  PubMed  Google Scholar 

27.

Karagoz GE, Acosta-Alvear D, Nguyen HT, Lee CP, Chu F, Walter P. An unfolded protein-induced conformational switch activates mammalian IRE1. eLife. 2017;6. https://doi.org/10.7554/eLife.30700.

28.

Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002;415(6867):92–6. https://doi.org/10.1038/415092a.

29.

Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol. 2003;23(21):7448–59. https://doi.org/10.1128/mcb.23.21.7448-7459.2003.

CAS  Article  PubMed  PubMed Central  Google Scholar 

30.

Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T, et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem. 2001;276(17):13935–40. https://doi.org/10.1074/jbc.M010677200.

31.

Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell. 2000;5(5):897–904. https://doi.org/10.1016/s1097-2765(00)80330-5.

CAS  Article  PubMed  Google Scholar 

32.

Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11(3):619–33. https://doi.org/10.1016/s1097-2765(03)00105-9.

33.

Ma Y, Brewer JW, Diehl JA, Hendershot LM. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol. 2002;318(5):1351–65. https://doi.org/10.1016/s0022-2836(02)00234-6.

CAS  Article  PubMed  Google Scholar 

34.

Averous J, Bruhat A, Jousse C, Carraro V, Thiel G, Fafournoux P. Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2 phosphorylation. J Biol Chem. 2004;279(7):5288–97. https://doi.org/10.1074/jbc.M311862200.

CAS  Article  PubMed  Google Scholar 

35.

Brush MH, Weiser DC, Shenolikar S. Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol. 2003;23(4):1292–303. https://doi.org/10.1128/mcb.23.4.1292-1303.2003.

CAS  Article  PubMed  PubMed Central  Google Scholar 

36.

Yoshida H, Haze K, Yanagi H, Yura T, Mori K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem. 1998;273(50):33741–9. https://doi.org/10.1074/jbc.273.50.33741.

CAS  Article  PubMed  Google Scholar 

37.

Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell. 2007;13(3):365–76. https://doi.org/10.1016/j.devcel.2007.07.018.

38.

Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107(7):881–91. https://doi.org/10.1016/s0092-8674(01)00611-0.

CAS  Article  PubMed  Google Scholar 

39.

•• Maiers JL, Malhi H. Endoplasmic reticulum stress in metabolic liver diseases and hepatic fibrosis. Semin Liver Dis. 2019;39(2):235–48. https://doi.org/10.1055/s-0039-1681032. The article describes the importance of ER stress mediated UPR in alcoholic and non-alcoholic liver diseases and fibrosis.

40.

Duennwald ML. Cellular stress responses in protein misfolding diseases. Future Science OA. 2015;1(2):Fso42. https://doi.org/10.4155/fso.15.42.

CAS  Article  PubMed  PubMed Central  Google Scholar 

41.

Liu Y, Chang A. Heat shock response relieves ER stress. EMBO J. 2008;27(7):1049–59. https://doi.org/10.1038/emboj.2008.42.

CAS  Article  PubMed  PubMed Central  Google Scholar 

42.

Hou J, Tang H, Liu Z, Osterlund T, Nielsen J, Petranovic D. Management of the endoplasmic reticulum stress by activation of the heat shock response in yeast. FEMS Yeast Res. 2014;14(3):481–94. https://doi.org/10.1111/1567-1364.12125.

CAS  Article  PubMed  Google Scholar 

43.

Marcu MG, Doyle M, Bertolotti A, Ron D, Hendershot L, Neckers L. Heat shock protein 90 modulates the unfolded protein response by stabilizing IRE1alpha. Mol Cell Biol. 2002;22(24):8506–13. https://doi.org/10.1128/mcb.22.24.8506-8513.2002.

CAS  Article  PubMed  PubMed Central  Google Scholar 

44.

Gupta S, Deepti A, Deegan S, Lisbona F, Hetz C, Samali A. HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction. PLoS Biol. 2010;8(7):e1000410. https://doi.org/10.1371/journal.pbio.1000410.

CAS  Article  PubMed  PubMed Central  Google Scholar 

45.

Han S, Liu Y, Chang A. Cytoplasmic Hsp70 promotes ubiquitination for endoplasmic reticulum-associated degradation of a misfolded mutant of the yeast plasma membrane ATPase, PMA1. J Biol Chem. 2007;282(36):26140–9. https://doi.org/10.1074/jbc.M701969200.

CAS  Article  PubMed  Google Scholar 

46.

Heldens L, Hensen SM, Onnekink C, van Genesen ST, Dirks RP, Lubsen NH. An atypical unfolded protein response in heat shocked cells. PLoS One. 2011;6(8):e23512. https://doi.org/10.1371/journal.pone.0023512.

CAS  Article 

留言 (0)

沒有登入
gif