Beyond Growth Factors: Macrophage-Centric Strategies for Angiogenesis

1.

Auger FA, Gibot L, Lacroix D. The pivotal role of vascularization in tissue engineering. Annu Rev Biomed Eng. 2013;15:177–200.

CAS  PubMed  Google Scholar 

2.

Mastrullo V, Cathery W, Velliou E, Madeddu P, Campagnolo P. Angiogenesis in tissue engineering: as nature intended? Front Bioeng Biotechnol. 2020;8:188.

PubMed  PubMed Central  Google Scholar 

3.

Rouwkema J, Khademhosseini A. Vascularization and angiogenesis in tissue engineering: beyond creating static networks. Trends Biotechnol. 2016;34:733–45.

CAS  PubMed  Google Scholar 

4.

Soker S, Machado M, Atala A. Systems for therapeutic angiogenesis in tissue engineering. World J Urol. 2000;18:10–8.

CAS  PubMed  Google Scholar 

5.

Jabbarzadeh E, Starnes T, Khan YM, Jiang T, Wirtel AJ, Deng M, et al. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach. Proc Natl Acad Sci U S A. 2008;105:11099–104.

CAS  PubMed  PubMed Central  Google Scholar 

6.

Madden LR, Mortisen DJ, Sussman EM, Dupras SK, Fugate JA, Cuy JL, et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci U S A. 2010;107:15211–6.

CAS  PubMed  PubMed Central  Google Scholar 

7.

Patel ZS, Mikos AG. Angiogenesis with biomaterial-based drug- and cell-delivery systems. J Biomater Sci Polym Ed. 2004;15:701–26.

CAS  PubMed  Google Scholar 

8.

Sharkawy AA, Klitzman B, Truskey GA, Reichert WM. Engineering the tissue which encapsulates subcutaneous implants. III. Effective tissue response times. J Biomed Mater Res. 1998;40:598–605.

CAS  PubMed  Google Scholar 

9.

Colton CK. Implantable biohybrid artificial organs. Cell Transplant. 1995;4:415–36.

CAS  PubMed  Google Scholar 

10.

Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100.

CAS  PubMed  Google Scholar 

11.

Brown BN, Badylak SF. Expanded applications, shifting paradigms and an improved understanding of host-biomaterial interactions. Acta Biomater. 2013;9:4948–55.

CAS  PubMed  Google Scholar 

12.

Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials. 2012;33:3792–802.

CAS  PubMed  PubMed Central  Google Scholar 

13.

Brown BN, Sicari BM, Badylak SF. Rethinking regenerative medicine: a macrophage-centered approach. Front Immunol. 2014;5:510.

PubMed  PubMed Central  Google Scholar 

14.

Remes A, Williams DF. Immune response in biocompatibility. Biomaterials. 1992;13:731–43.

CAS  PubMed  Google Scholar 

15.

Zor F, Selek FN, Orlando G, Williams DF. Biocompatibility in regenerative nanomedicine. Nanomedicine (London). 2019;14:2763–75.

CAS  Google Scholar 

16.

Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123–47.

CAS  PubMed  Google Scholar 

17.

Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229:176–85.

CAS  PubMed  Google Scholar 

18.

Mills CD. M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol. 2012;32:463–88.

CAS  PubMed  Google Scholar 

19.

Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol. 2011;89:557–63.

CAS  PubMed  PubMed Central  Google Scholar 

20.

Hume DA. The many alternative faces of macrophage activation. Front Immunol. 2015;6:370.

PubMed  PubMed Central  Google Scholar 

21.

Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

CAS  PubMed  PubMed Central  Google Scholar 

22.

Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20.

CAS  PubMed  PubMed Central  Google Scholar 

23.

Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL. Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation. 2016;23:95–121.

PubMed  PubMed Central  Google Scholar 

24.

O'Brien EM, Risser GE, Spiller KL. Sequential drug delivery to modulate macrophage behavior and enhance implant integration. Adv Drug Deliv Rev. 2019;149-150:85–94.

CAS  PubMed  PubMed Central  Google Scholar 

25.

Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials. 2014;35:4477–88.

CAS  PubMed  PubMed Central  Google Scholar 

26.

Vannella KM, Wynn TA. Mechanisms of organ injury and repair by macrophages. Annu Rev Physiol. 2017;79:593–617.

CAS  PubMed  Google Scholar 

27.

Geiger F, Lorenz H, Xu W, Szalay K, Kasten P, Claes L, et al. VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone. 2007;41:516–22.

CAS  PubMed  Google Scholar 

28.

Li R, Stewart DJ, von Schroeder HP, Mackinnon ES, Schemitsch EH. Effect of cell-based VEGF gene therapy on healing of a segmental bone defect. J Orthop Res. 2009;27:8–14.

CAS  PubMed  Google Scholar 

29.

Bentley K, Gerhardt H, Bates PA. Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J Theor Biol. 2008;250:25–36.

CAS  PubMed  Google Scholar 

30.

Martino MM, et al. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine. Front Bioeng Biotechnol. 2015;3:45.

PubMed  PubMed Central  Google Scholar 

31.

Garcia JR, Garcia AJ. Biomaterial-mediated strategies targeting vascularization for bone repair. Drug Deliv Transl Res. 2016;6:77–95.

CAS  PubMed  PubMed Central  Google Scholar 

32.

Kuss MA, et al. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture. J Biomed Mater Res B Appl Biomater. 2018;106:1788–98.

CAS  PubMed  Google Scholar 

33.

Chen X, Aledia AS, Popson SA, Him L, Hughes CCW, George SC. Rapid anastomosis of endothelial progenitor cell-derived vessels with host vasculature is promoted by a high density of cotransplanted fibroblasts. Tissue Eng A. 2010;16:585–94.

CAS  Google Scholar 

34.

Hall H. Modified fibrin hydrogel matrices: both, 3D-scaffolds and local and controlled release systems to stimulate angiogenesis. Curr Pharm Des. 2007;13:3597–607.

CAS  PubMed  Google Scholar 

35.

Griffith CK, Miller C, Sainson RCA, Calvert JW, Jeon NL, Hughes CCW, et al. Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng. 2005;11:257–66.

CAS  PubMed  Google Scholar 

36.

Baudin B, Bruneel A, Bosselut N, Vaubourdolle M. A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc. 2007;2:481–5.

CAS  PubMed  Google Scholar 

37.

Nor JE, et al. Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Invest. 2001;81:453–63.

CAS  PubMed  Google Scholar 

38.

Supp DM, Wilson-Landy K, Boyce ST. Human dermal microvascular endothelial cells form vascular analogs in cultured skin substitutes after grafting to athymic mice. FASEB J. 2002;16:797–804.

CAS  PubMed  PubMed Central  Google Scholar 

39.

Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest. 2000;105:71–7.

CAS  PubMed  PubMed Central  Google Scholar 

40.

Taura D, Sone M, Homma K, Oyamada N, Takahashi K, Tamura N, et al. Induction and isolation of vascular cells from human induced pluripotent stem cells--brief report. Arterioscler Thromb Vasc Biol. 2009;29:1100–3.

CAS  PubMed  Google Scholar 

41.

Palladino A, et al. Induced pluripotent stem cells as vasculature forming entities. J Clin Med. 2019;8:1782.

CAS  PubMed Central  Google Scholar 

42.

Tian L, George SC. Biomaterials to prevascularize engineered tissues. J Cardiovasc Transl Res. 2011;4:685–98.

PubMed  Google Scholar 

43.

O'Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14:88–95.

CAS  Google Scholar 

44.

de Mel A, Jell G, Stevens MM, Seifalian AM. Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review. Biomacromolecules. 2008;9:2969–79.

PubMed  Google Scholar 

45.

Phelps EA, Garcia AJ. Engineering more than a cell: vascularization strategies in tissue engineering. Curr Opin Biotechnol. 2010;21:704–9.

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif