DEAD-box Helicase 27 Promotes Hepatocellular Carcinoma Progression Through ERK Signaling

1. Forner, A, Reig, M, Bruix, J. Hepatocellular carcinoma. Lancet. 2018;391:1301‐1314. DOI: 10.1016/S0140-6736(18)30010-2
Google Scholar | Crossref | Medline2. Qi, X, Berzigotti, A, Cardenas, A, Sarin, SK. Emerging non-invasive approaches for diagnosis and monitoring of portal hypertension. Lancet Gastroenterol Hepatol. 2018;3:708‐719. DOI: 10.1016/S2468-1253(18)30232-2
Google Scholar | Crossref | Medline3. Bruix, J, Reig, M, Sherman, M. Evidence-Based diagnosis, staging, and treatment of patients With hepatocellular carcinoma. Gastroenterology. 2016;150:835‐853. DOI: 10.1053/j.gastro.2015.12.041
Google Scholar | Crossref | Medline4. Liu, C, Zha, Z, Zhou, C, et al. Ribonuclease 7-driven activation of ros1 is a potential therapeutic target in hepatocellular carcinoma. J Hepatol. 2021;74:907. DOI: 10.1016/j.jhep.2020.09.030
Google Scholar | Crossref | Medline5. Zhou, C, Liu, C, Liu, W, et al. Slfn11 inhibits hepatocellular carcinoma tumorigenesis and metastasis by targeting rps4X via mTOR pathway. Theranostics. 2020;10:4627‐4643.
Google Scholar | Crossref | Medline6. Boisvert, FM, van Koningsbruggen, S, Navascués, J, Lamond, AI. The multifunctional nucleolus. Nat Rev Mol Cell Biol. 2007;8:574‐585. DOI: 10.1038/nrm2184
Google Scholar | Crossref | Medline | ISI7. Mallam, AL, Del Campo, M, Gilman, B, Sidote, DJ, Lambowitz, AM. Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p. Nature. 2012;490:121‐125. DOI: 10.1038/nature11402
Google Scholar | Crossref | Medline8. Bennett, AH, Donohue, MF, Gundry, SR, et al. RNA Helicase, DDX27 regulates skeletal muscle growth and regeneration by modulation of translational processes. PLoS Genet. 2018;14:e1007226. DOI: 10.1371/journal.pgen.1007226
Google Scholar | Crossref | Medline9. Yang, C, Li, D, Bai, Y, et al. DEAD-box helicase 27 plays a tumor-promoter role by regulating the stem cell-like activity of human colorectal cancer cells. Onco Targets Ther. 2019;12:233‐241. DOI: 10.2147/OTT.S190814
Google Scholar | Crossref | Medline10. Sugai, T, Osakabe, M, Sugimoto, R, et al. A genome-wide study of the relationship between chromosomal abnormalities and gene expression in colorectal tumors. Genes Chromosomes Cancer. 2020;60:250-262. DOI: 10.1002/gcc.22924
Google Scholar | Crossref | Medline11. Tanabe, S, Quader, S, Ono, R, et al. Molecular network profiling in intestinal- and diffuse-type gastric cancer. Cancers (Basel). 2020;12:3833. DOI: 10.3390/cancers12123833
Google Scholar | Crossref12. Tang, J, Chen, H, Wong, CC, et al. DEAD-box helicase 27 promotes colorectal cancer growth and metastasis and predicts poor survival in CRC patients. Oncogene. 2018;37:3006‐3021. DOI: 10.1038/s41388-018-0196-1
Google Scholar | Crossref | Medline13. Zhou, J, Yong, WP, Yap, CS, et al. An integrative approach identified genes associated with drug response in gastric cancer. Carcinogenesis. 2015;36:441‐451. DOI: 10.1093/carcin/bgv014
Google Scholar | Crossref | Medline14. Zhuang, H, Li, Q, Zhang, X, et al. Downregulation of glycine decarboxylase enhanced cofilin-mediated migration in hepatocellular carcinoma cells. Free Radic Biol Med. 2018;120:1‐12.
Google Scholar | Crossref | Medline15. Percie du Sert, N, Hurst, V, Ahluwalia, A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. Br J Pharmacol. 2020;177:3617‐3624.
Google Scholar | Crossref | Medline16. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the care and use of laboratory animals. 8th ed. Washington (DC): National Academies Press (US); 2011.
Google Scholar17. Tan, W, Luo, X, Li, W, et al. TNF-α is a potential therapeutic target to overcome sorafenib resistance in hepatocellular carcinoma. EBioMedicine. 2019;40:446‐456. DOI: 10.1016/j.ebiom.2018.12.047
Google Scholar | Crossref | Medline18. Yu, M, Zhou, X, Niu, L, et al. Targeting transmembrane TNF-α suppresses breast cancer growth. Cancer Res. 2013;73:4061‐4074. DOI: 10.1158/0008-5472.CAN-12-3946
Google Scholar | Crossref | Medline19. Brady, CA, Jiang, D, Mello, SS, et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell. 2011;145:571‐583. DOI: 10.1016/j.cell.2011.03.035
Google Scholar | Crossref | Medline20. Aubrey, BJ, Janic, A, Chen, Y, et al. Mutant TRP53 exerts a target gene-selective dominant-negative effect to drive tumor development. Genes Dev. 2018;32:1420‐1429. DOI: 10.1101/gad.314286.118
Google Scholar | Crossref | Medline21. Janic, A, Valente, LJ, Wakefield, MJ, et al. DNA Repair processes are critical mediators of p53-dependent tumor suppression. Nat Med. 2018;24:947‐953. DOI: 10.1038/s41591-018-0043-5
Google Scholar | Crossref | Medline22. Tarangelo, A, Magtanong, L, Bieging-Rolett, KT, et al. P53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep. 2018;22:569‐575. DOI: 10.1016/j.celrep.2017.12.077
Google Scholar | Crossref | Medline23. Holgado-Madruga, M, Emlet, DR, Moscatello, DK, Godwin, AK, Wong, AJ. A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature. 1996;379:560‐564. DOI: 10.1038/379560a0
Google Scholar | Crossref | Medline | ISI24. Losert, A, Lötsch, D, Lackner, A, et al. The major vault protein mediates resistance to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Lett. 2012;319:164‐172. DOI: 10.1016/j.canlet.2012.01.002
Google Scholar | Crossref | Medline25. Liu, Y, Zhang, X, Yang, B, et al. Demethylation-Induced overexpression of Shc3 drives c-Raf-independent activation of MEK/ERK in HCC. Cancer Res. 2018;78:2219‐2232. DOI: 10.1158/0008-5472.CAN-17-2432
Google Scholar | Crossref | Medline26. Morris, EJ, Jha, S, Restaino, CR, et al. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov. 2013;3:742‐750. DOI: 10.1158/2159-8290.CD-13-0070
Google Scholar | Crossref | Medline27. Sun, WJ, Huang, H, He, B, et al. Romidepsin induces G2/M phase arrest via Erk/cdc25C/cdc2/cyclinB pathway and apoptosis induction through JNK/c-Jun/caspase3 pathway in hepatocellular carcinoma cells. Biochem Pharmacol. 2017;127:90‐100. DOI: 10.1016/j.bcp.2016.12.008
Google Scholar | Crossref | Medline28. Sarkar, M, Ghosh, MK. DEAD Box RNA helicases: crucial regulators of gene expression and oncogenesis. Front Biosci (Landmark Ed. 2016;21:225‐250. DOI: 10.2741/4386
Google Scholar | Crossref | Medline29. Fuller-Pace, FV . DEAD Box RNA helicase functions in cancer. RNA Biol. 2013;10:121‐132. DOI: 10.4161/rna.23312
Google Scholar | Crossref | Medline30. Tanaka, K, Okamoto, S, Ishikawa, Y, Tamura, H, Hara, T. DDX1 Is required for testicular tumorigenesis, partially through the transcriptional activation of 12p stem cell genes. Oncogene. 2009;28:2142‐2151. DOI: 10.1038/onc.2009.89
Google Scholar | Crossref | Medline31. Botlagunta, M, Vesuna, F, Mironchik, Y, et al. Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene. 2008;27:3912‐3922. DOI: 10.1038/onc.2008.33
Google Scholar | Crossref | Medline32. Tsukamoto, Y, Fumoto, S, Noguchi, T, et al. Expression of DDX27 contributes to colony-forming ability of gastric cancer cells and correlates with poor prognosis in gastric cancer. Am J Cancer Res. 2015;5:2998‐3014.
Google Scholar | Medline33. Santos, E, Crespo, P. The RAS-ERK pathway: a route for couples. Sci Signal. 2018;11. DOI: 10.1126/scisignal.aav0917
Google Scholar | Crossref34. Sebolt-Leopold, JS, Dudley, DT, Herrera, R, et al. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med. 1999;5:810‐816. DOI: 10.1038/10533
Google Scholar | Crossref | Medline | ISI35. Rubinfeld, H, Seger, R. The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol. 2005;31:151‐174. DOI: 10.1385/MB:31:2:151
Google Scholar | Crossref | Medline36. Ito, Y, Sasaki, Y, Horimoto, M, et al. Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology. 1998;27:951‐958. DOI: 10.1002/hep.510270409
Google Scholar | Crossref | Medline | ISI37. Kolch, W . Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol. 2005;6:827‐837. DOI: 10.1038/nrm1743
Google Scholar | Crossref | Medline38. Aditi, MA, Sharma, M, Dawson, TR, Wente, SR. MAPK- and glycogen synthase kinase 3-mediated phosphorylation regulates the DEAD-box protein modulator Gle1 for control of stress granule dynamics. J Biol Chem. 2019;294:559‐575. DOI: 10.1074/jbc.RA118.005749
Google Scholar | Crossref | Medline39. Catalanotti, F, Reyes, G, Jesenberger, V, et al. A Mek1-Mek2 heterodimer determines the strength and duration of the Erk signal. Nat Struct Mol Biol. 2009;16:294‐303. DOI: 10.1038/nsmb.1564
Google Scholar | Crossref | Medline40. Herrero, A, Pinto, A, Colón-Bolea, P, et al. Small molecule inhibition of ERK dimerization prevents tumorigenesis by RAS-ERK pathway oncogenes. Cancer Cell. 2015;28:170‐182. DOI: 10.1016/j.ccell.2015.07.001
Google Scholar | Crossref | Medline | ISI41. Kolli, S, Zito, CI, Mossink, MH, Wiemer, EA, Bennett, AM. The major vault protein is a novel substrate for the tyrosine phosphatase SHP-2 and scaffold protein in epidermal growth factor signaling. J Biol Chem. 2004;279:29374‐29385. DOI: 10.1074/jbc.M313955200
Google Scholar | Crossref | Medline42. Mossink, MH, van Zon, A, Scheper, RJ, Sonneveld, P, Wiemer, EA. Vaults: a ribonucleoprotein particle involved in drug resistance. Oncogene. 2003;22:7458‐7467. DOI: 10.1038/sj.onc.1206947
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif