1. Hoeben, BA, Carrie, C, Timmermann, B, et al. Management of vertebral radiotherapy dose in paediatric patients with cancer: consensus recommendations from the SIOPE radiotherapy working group. Lancet Oncol. 2019;20(3):e155-e166. doi:
10.1016/S1470-2045(19)30034-8 Google Scholar |
Crossref |
Medline2. Wong, CS, Van Dyk, J, Milosevic, M, Laperriere, NJ. Radiation myelopathy following single courses of radiotherapy and retreatment. Int J Radiat Oncol Biol Phys. 1994;30(3):575-581. doi:
10.1016/0360-3016(92)90943-c Google Scholar |
Crossref |
Medline3. Gibbs, IC, Patil, C, Gerszten, PC, Adler, JR, Burton, SA. Delayed radiation-induced myelopathy after spinal radiosurgery. Neurosurgery. 2009;64(2 Suppl):A67-A72. doi:
10.1227/01.NEU.0000341628.98141.B6.
Google Scholar |
Crossref |
Medline4. Sahgal, A, Weinberg, V, Ma, L, et al. Probabilities of radiation myelopathy specific to stereotactic body radiation therapy to guide safe practice. Int J Radiat Oncol Biol Phys. 2013;85(2):341-347. doi:
10.1016/j.ijrobp.2012.05.007 Google Scholar |
Crossref |
Medline |
ISI5. Bell, LJ, Eade, T, Kneebone, A, et al. Initial experience with intra-fraction motion monitoring using Calypso guided volumetric modulated arc therapy for definitive prostate cancer treatment. J Med Radiat Sci. 2017;64(1):25-34. doi:
10.1002/jmrs.224 Google Scholar |
Crossref |
Medline6. Kupelian, P, Willoughby, T, Mahadevan, A, et al. Multi-institutional clinical experience with the Calypso system in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys. 2007;67(4):1088-1098. doi:
10.1016/j.ijrobp.2006.10.026 Google Scholar |
Crossref |
Medline |
ISI7. Vanhanen, A, Syren, H, Kapanen, M. Localization accuracy of two electromagnetic tracking systems in prostate cancer radiotherapy: a comparison with fiducial marker based kilovoltage imaging. Phys Med. 2018;56:10-18. doi:
10.1016/j.ejmp.2018.11.007 Google Scholar |
Crossref |
Medline8. Grimwood, A, McNair, HA, O’Shea, TP, et al. In vivo validation of elekta’s clarity autoscan for ultrasound-based intrafraction motion estimation of the prostate during radiation therapy. Int J Radiat Oncol Biol Phys. 2018;102(4):912-921. doi:
10.1016/j.ijrobp.2018.04.008 Google Scholar |
Crossref |
Medline9. Korpics, MC, Rokni, M, Degnan, M, Aydogan, B, Liauw, SL, Redler, G. Utilizing the TrueBeam advanced imaging package to monitor intrafraction motion with periodic kV imaging and automatic marker detection during VMAT prostate treatments. J Appl Clin Med Phys. 2020;21(3):184-191. doi:
10.1002/acm2.12822 Google Scholar |
Crossref |
Medline10. Covington, EL, Fiveash, JB, Wu, X, et al. Optical surface guidance for submillimeter monitoring of patient position during frameless stereotactic radiotherapy. J Appl Clin Med Phys. 2019;20(6):91-98. doi:
10.1002/acm2.12611 Google Scholar |
Crossref |
Medline11. Covington, EL, Stanley, DN, Fiveash, JB, et al. Surface guided imaging during stereotactic radiosurgery with automated delivery. J Appl Clin Med Phys. 2020;21(12):90-95. doi:
10.1002/acm2.13066 Google Scholar |
Crossref |
Medline12. Ding, GX, Alaei, P, Curran, B, et al. Image guidance doses delivered during radiotherapy: quantification, management, and reduction: report of the AAPM therapy physics committee task group 180. Med Phys. 2018;45(5):e84-e99. doi:
10.1002/mp.12824 Google Scholar |
Crossref |
Medline13. Bertholet, J, Knopf, A, Eiben, B, et al. Real-time intrafraction motion monitoring in external beam radiotherapy. Phys Med Biol. 2019;64(15):15TR01. doi:
10.1088/1361-6560/ab2ba8 Google Scholar |
Crossref |
Medline14. Sandler, HM, Liu, PY, Dunn, RL, et al. Reduction in patient-reported acute morbidity in prostate cancer patients treated with 81-Gy intensity-modulated radiotherapy using reduced planning target volume margins and electromagnetic tracking: assessing the impact of margin reduction study. Urology. 2010;75(5):1004-1008. doi:
10.1016/j.urology.2009.10.072 Google Scholar |
Crossref |
Medline15. Singh, J, Greer, PB, White, MA, et al. Treatment-related morbidity in prostate cancer: a comparison of 3-dimensional conformal radiation therapy with and without image guidance using implanted fiducial markers. Int J Radiat Oncol Biol Phys. 2013;85(4):1018-1023. doi:
10.1016/j.ijrobp.2012.07.2376 Google Scholar |
Crossref |
Medline16. Zelefsky, MJ, Kollmeier, M, Cox, B, et al. Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 2012;84(1):125-129. doi:
10.1016/j.ijrobp.2011.11.047 Google Scholar |
Crossref |
Medline |
ISI17. Wortel, RC, Incrocci, L, Pos, FJ, et al. Acute toxicity after image-guided intensity modulated radiation therapy compared to 3D conformal radiation therapy in prostate cancer patients. Int J Radiat Oncol Biol Phys. 2015;91(4):737-744. doi:
10.1016/j.ijrobp.2014.12.017 Google Scholar |
Crossref |
Medline18. Walb, M, Jethwa, K, Park, S, Hallemeier, C, Pafundi, D. The Use of triggered imaging for intrafraction target verification in liver SBRT breathhold. Radiat Oncol. 2019;133(Supplement 1):S535. doi:
10.1016/S0167-8140(19)31399-4.
Google Scholar |
Crossref19. Kisivan, K, Antal, G, Gulyban, A, et al. Triggered imaging With auto beam hold and Pre-/posttreatment CBCT during prostate SABR: analysis of time efficiency, target coverage, and normal volume changes. Pract Radiat Oncol. 2020;11(2):e210–e218. doi:
10.1016/j.prro.2020.04.014 Google Scholar |
Crossref |
Medline20. Chasseray, M, Dissaux, G, Lucia, F, et al. Kilovoltage intrafraction monitoring during normofractionated prostate cancer radiotherapy. Cancer Radiother. 2020;24(2):99-105. doi:
10.1016/j.canrad.2019.11.001 Google Scholar |
Crossref |
Medline21. Zeng, C, Xiong, W, Li, X, et al. Intrafraction tumor motion during deep inspiration breath hold pancreatic cancer treatment. J Appl Clin Med Phys. 2019;20(5):37-43. doi:
10.1002/acm2.12577 Google Scholar |
Crossref |
Medline22. Wang, X, Ghia, AJ, Zhao, Z, et al. Prospective evaluation of target and spinal cord motion and dosimetric changes with respiration in spinal stereotactic body radiation therapy utilizing 4-D CT. J Radiosurg SBRT. 2016;4(3):191-201.
https://www.ncbi.nlm.nih.gov/pubmed/29296444 Google Scholar |
Medline23. Takakura, T, Mizowaki, T, Nakata, M, et al. The geometric accuracy of frameless stereotactic radiosurgery using a 6D robotic couch system. Phys Med Biol. 2010;55(1):1-10. doi:
10.1088/0031-9155/55/1/001 Google Scholar |
Crossref |
Medline |
ISI24. Faul, CM, Flickinger, JC. The use of radiation in the management of spinal metastases. J Neurooncol. 1995;23(2):149-161. doi:
10.1007/BF01053419 Google Scholar |
Crossref |
Medline25. Hamilton, AJ, Lulu, BA, Fosmire, H, Stea, B, Cassady, JR. Preliminary clinical experience with linear accelerator-based spinal stereotactic radiosurgery. Neurosurgery. 1995;36(2):311-319. doi:
10.1227/00006123-199502000-00010 Google Scholar |
Crossref |
Medline26. Ryu, SI, Chang, SD, Kim, DH, et al. Image-guided hypo-fractionated stereotactic radiosurgery to spinal lesions. Neurosurgery. 2001;49(4):838-846. doi:
10.1097/00006123-200110000-00011 Google Scholar |
Crossref |
Medline27. Wang, CW, Lin, YC, Tseng, HM, et al. Prolonged treatment time deteriorates positioning accuracy for stereotactic radiosurgery. PLoS One. 2015;10(4):e0123359. doi:
10.1371/journal.pone.0123359 Google Scholar |
Crossref |
Medline28. Sintay, B, Bellon, M, Hammoud, R, Nurushev, TS, Chetty, IJ. TU-D-304A-04: the influence of CT resolution On volume definition and image quality in SRS and SBRT simulation. Medical Physics. 2009;36(6):2737. doi:
10.1118/1.3182392 Google Scholar |
Crossref29. Mylonas, A, Booth, J, Nguyen, DT. A review of artificial intelligence applications for motion tracking in radiotherapy. J Med Imaging Radiat Oncol. 2021;65(5):596-611. doi:
10.1111/1754-9485.13285 Google Scholar |
Crossref |
Medline30. Liang, Z, Zhou, Q, Yang, J, et al. Artificial intelligence-based framework in evaluating intrafraction motion for liver cancer robotic stereotactic body radiation therapy with fiducial tracking. Med Phys. 2020;47(11):5482-5489. doi:
10.1002/mp.14501 Google Scholar |
Crossref |
Medline31. Nyflot, MJ, Thammasorn, P, Wootton, LS, Ford, EC, Chaovalitwongse, WA. Deep learning for patient-specific quality assurance: identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks. Med Phys. 2019;46(2):456-464. doi:
10.1002/mp.13338 Google Scholar |
Crossref |
Medline32. Li, W, Sahgal, A, Foote, M, Millar, BA, Jaffray, DA, Letourneau, D. Impact of immobilization on intrafraction motion for spine stereotactic body radiotherapy using cone beam computed tomography. Int J Radiat Oncol Biol Phys. 2012;84(2):520-526. doi:
10.1016/j.ijrobp.2011.12.039 Google Scholar |
Crossref |
Medline33. Ren, L, Zhang, Y, Yin, FF. A limited-angle intrafraction verification (LIVE) system for radiation therapy. Med Phys. 2014;41(2):020701. doi:
10.1118/1.4861820 Google Scholar |
Crossref |
Medline |
ISI34. Li, T, Li, F, Cai, W, Zhang, P, Li, X. Technical note: synthetic treatment beam imaging for motion monitoring during spine SBRT treatments - a phantom study. Med Phys. 2021;48(1):125-131. doi:
10.1002/mp.14618 Google Scholar |
Crossref |
Medline35. Roggen, T, Bobic, M, Givehchi, N, Scheib, SG. Deep learning model for markerless tracking in spinal SBRT. Phys Med. 2020;74:66-73. doi:
10.1016/j.ejmp.2020.04.029 Google Scholar |
Crossref |
Medline36. Raaymakers, BW, Jurgenliemk-Schulz, IM, Bol, GH, et al. First patients treated with a 1.5 T MRI-linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol. 2017;62(23):L41-L50. doi:
10.1088/1361-6560/aa9517 Google Scholar |
Crossref |
Medline37. Paganelli, C, Lee, D, Kipritidis, J, et al. Feasibility study on 3D image reconstruction from 2D orthogonal cine-MRI for MRI-guided radiotherapy. J Med Imaging Radiat Oncol. 2018;62(3):389-400. doi:
10.1111/1754-9485.12713 Google Scholar |
Crossref |
Medline38. Redler, G, Stevens, T, Cammin, J, et al. Dosimetric feasibility of utilizing the ViewRay magnetic resonance guided linac system for image-guided spine stereotactic body radiation therapy. Cureus. 2019;11(12):e6364. doi:
10.7759/cureus.6364 Google Scholar |
Crossref |
Medline
留言 (0)