A Pilot Study Evaluating the Effects of a Technology-Based and Positive Psychological Training Intervention on Blood Pressure in African Americans With Hypertension

1. Schorr, EN, Gepner, AD, Dolansky, MA, et al. Harnessing mobile health technology for secondary cardiovascular disease prevention in older adults: a scientific statement from the American Heart Association. Circ Cardiovasc Qual Outcomes. 2021;14(5):e000103. doi:10.1161/HCQ.0000000000000103
Google Scholar | Crossref | Medline2. Burke, LE, Ma, J, Azar, KM, et al. Current science on consumer use of mobile health for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation. 2015;132(12):1157-1213. doi:10.1161/CIR.0000000000000232
Google Scholar | Crossref | Medline3. Grady, PA, Gough, LL. Self-management: a comprehensive approach to management of chronic conditions. Am J Public Health. 2014;104(8):e25-e31. doi:10.2105/AJPH.2014.302041
Google Scholar | Crossref | Medline4. Lorig, KR, Holman, HR. Self-management education: history, definition, outcomes, and mechanisms. Ann Behav Med. 2003;26:1-7.
Google Scholar | Crossref | Medline | ISI5. Band, R, Bradbury, K, Morton, K, et al. Intervention planning for a digital intervention for self-management of hypertension: a theory-, evidence- and person-based approach. Implement Sci. 2017;12(1):25. doi:10.1186/s13012-017-0553-4
Google Scholar | Crossref | Medline6. Bobrow, K, Farmer, AJ, Springer, D, et al. Mobile phone text messages to support treatment adherence in adults with high blood pressure (SMS-text adherence support [StAR]): a single-blind, randomized trial. Circulation. 2016;133(6):592-600. doi:10.1161/CIRCULATIONAHA.115.017530
Google Scholar | Crossref | Medline7. Still, CH, Jones, LM, Moss, KO, Variath, M, Wright, KD. African American older adults’ perceived use of technology for hypertension self-management. Res Gerontol Nurs. 2018;11(5):249-256. doi:10.3928/19404921-20180809-02
Google Scholar | Crossref | Medline8. Center for Disease Control and Prevention . Facts about Hypertension. Accessed May 5, 2021. https://www.cdc.gov/bloodpressure/facts.htm
Google Scholar9. Whelton, PK, Carey, RM, Aronow, W, et al. ACC/AHA/AAPA/ABC/ACPM/AGS /APhAASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension. 2017;2017;71(6):1269-1324. doi:10.1161/HYP.0000000000000065
Google Scholar | Crossref10. Howard, G, Cushman, M, Moy, CS, et al. Association of clinical and social factors with excess hypertension risk in black compared with white US adults. JAMA. 2018;320(13):1338-1348. doi:10.1001/jama.2018.13467
Google Scholar | Crossref | Medline11. Ryan, P, Sawin, KJ. The individual and family self-management theory: background and perspectives on context process and outcomes. Nurs Outlook. 2009;57:217-225.e6. doi:10.1016/j.outlook.2008.10.004
Google Scholar | Crossref | Medline12. Jack, AI, Dawson, AJ, Begany, KL, et al. fMRI reveals reciprocal inhibition between social and physical cognitive domains. Neuroimage. 2013;66:385-401.
Google Scholar | Crossref | Medline | ISI13. Moore, SM, Musil, CM, Jack, AI, et al. Characterization of brain signatures to add precision to self-management health information interventions. Nurs Res. 2019;68(2):127-134. doi:10.1097/NNR.0000000000000331
Google Scholar | Crossref | Medline14. Alberts, H, Pennock, SF. Positive psychology coaching; Manuals for coach and client. 2013. Accessed September 12, 2018. http://www.positivepsychologyprogram.com
Google Scholar15. Huffman, JC, DuBois, CM, Millstein, RA, Celano, CM, Wexler, D. Positive psychological interventions for patients with type 2 diabetes: rationale, theoretical model, and intervention development. J Diabetes Res. 2015;2015:428349. doi:10.1155/2015/428349
Google Scholar | Crossref | Medline16. Huntley, CD, Fisher, PL. Examining the role of positive and negative metacognitive beliefs in depression. Scand J Psychol. 2016;57(5):446-452. doi:10.1111/sjop.12306
Google Scholar | Crossref | Medline17. Muntner, P, Shimbo, D, Carey, RM, et al. Measurement of blood pressure in humans: a scientific statement from the American Heart Association. Hypertension. 2019;73(5):e35-e66. doi:10.1161/HYP.0000000000000087
Google Scholar | Crossref18. Cella, D, Riley, W, Stone, A, et al. The patient-reported outcomes measurement information system (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005-2008. J Clin Epidemiol. 2010;63(11):1179-1194. doi:10.1016/j.jclinepi.2010.04.011
Google Scholar | Crossref | Medline | ISI19. Krousel-Wood, M, Peacock, E, Joyce, C, et al. A hybrid 4-item Krousel-Wood medication adherence scale predicts cardiovascular events in older hypertensive adults. J Hypertens. 2019;37(4):851-859. doi:10.1097/HJH.0000000000001955
Google Scholar | Crossref | Medline20. Bangor, A, Kortum, PT, Miller, JT. An empirical evaluation of the system usability scale. Int J Hum Comput Interact. 2008;24(6):574-594. doi:10.1080/10447310802205776
Google Scholar | Crossref | ISI21. Gao, M, Kortum, P, Oswald, F. Psychometric evaluation of the USE (usefulness, satisfaction, and ease of use) questionnaire for reliability and validity. Proc Hum Factors Ergon Soc Annu Meet. 2018;62(1):1414-1418. doi:10.1177/1541931218621322
Google Scholar | SAGE Journals22. Van Remoortel, H, Giavedoni, S, Raste, Y, et al. Validity of activity monitors in health and chronic disease: a systematic review. The Int J Behav Nutr Phys Act. 2012;9(1):84.
Google Scholar | Crossref | Medline23. Migueles, JH, Cadenas-Sanchez, C, Ekelund, U, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017;47(9):1821-1845. doi:10.1007/s40279-017-0716-0
Google Scholar | Crossref | Medline24. Hibbard, JH, Mahoney, ER, Stockard, J, Tusler, M. Development and testing of a short form of the patient activation measure. Health Serv Res. 2005;40(6 Pt 1):1918-1930.
Google Scholar | Crossref | Medline25. Lorig, KR, Sobel, DS, Ritter, PL, Laurent, D, Hobbs, M. Effect of a self-management program on patients with chronic disease. Eff Clin Pract. 2001;4(6):256-262.
Google Scholar | Medline26. Bialostosky, K, Wright, JD, Kennedy-Stephenson, J, McDowell, M, Johnson, CL. Dietary intake of macronutrients, micronutrients, and other dietary constituents: United States 1988-94. Vital Health Stat 11. 2002;245:1-158.
Google Scholar | Medline27. Erkoc, SB, Isikli, B, Metintas, S, Kalyoncu, C. Hypertension knowledge-level scale (HK-LS): a study on development, validity and reliability. Int J Environ Res Public Health. 2012;9(3):1018-1029. doi:10.3390/ijerph9031018
Google Scholar | Crossref | Medline28. Watson, D, Clark, LA, Tellegen, A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol. 1988;54:1063-1070.
Google Scholar | Crossref | Medline | ISI29. Buis, L, Hirzel, L, Dawood, RM, et al. Text messaging to improve hypertension medication adherence in African Americans from primary care and emergency department settings: results from two randomized feasibility studies. JMIR Mhealth Uhealth. 2017;5(2):e9.
Google Scholar | Crossref | Medline30. Morawski, K, Ghazinouri, R, Krumme, A, et al. Association of a smartphone application with medication adherence and blood pressure control: the MedISAFE-BP randomized clinical trial. JAMA Intern Med. 2018;178(6):802-809.
Google Scholar | Crossref | Medline31. Kebede, MM, Pischke, CR. Corrigendum: popular diabetes apps and the impact of diabetes app use on self-care behaviour: a survey among the digital community of persons with diabetes on social media. Front Endocrinol. 2019;10(135):220. doi:10.3389/fendo.2019.00135
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif