1.
Schorr, EN, Gepner, AD, Dolansky, MA, et al. Harnessing mobile health technology for secondary cardiovascular disease prevention in older adults: a scientific statement from the American Heart Association. Circ Cardiovasc Qual Outcomes. 2021;14(5):e000103. doi:
10.1161/HCQ.0000000000000103 Google Scholar |
Crossref |
Medline2.
Burke, LE, Ma, J, Azar, KM, et al. Current science on consumer use of mobile health for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation. 2015;132(12):1157-1213. doi:
10.1161/CIR.0000000000000232 Google Scholar |
Crossref |
Medline3.
Grady, PA, Gough, LL. Self-management: a comprehensive approach to management of chronic conditions. Am J Public Health. 2014;104(8):e25-e31. doi:
10.2105/AJPH.2014.302041 Google Scholar |
Crossref |
Medline4.
Lorig, KR, Holman, HR. Self-management education: history, definition, outcomes, and mechanisms. Ann Behav Med. 2003;26:1-7.
Google Scholar |
Crossref |
Medline |
ISI5.
Band, R, Bradbury, K, Morton, K, et al. Intervention planning for a digital intervention for self-management of hypertension: a theory-, evidence- and person-based approach. Implement Sci. 2017;12(1):25. doi:
10.1186/s13012-017-0553-4 Google Scholar |
Crossref |
Medline6.
Bobrow, K, Farmer, AJ, Springer, D, et al. Mobile phone text messages to support treatment adherence in adults with high blood pressure (SMS-text adherence support [StAR]): a single-blind, randomized trial. Circulation. 2016;133(6):592-600. doi:
10.1161/CIRCULATIONAHA.115.017530 Google Scholar |
Crossref |
Medline7.
Still, CH, Jones, LM, Moss, KO, Variath, M, Wright, KD. African American older adults’ perceived use of technology for hypertension self-management. Res Gerontol Nurs. 2018;11(5):249-256. doi:
10.3928/19404921-20180809-02 Google Scholar |
Crossref |
Medline8.
Center for Disease Control and Prevention . Facts about Hypertension. Accessed May 5, 2021.
https://www.cdc.gov/bloodpressure/facts.htm Google Scholar9.
Whelton, PK, Carey, RM, Aronow, W, et al. ACC/AHA/AAPA/ABC/ACPM/AGS /APhAASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension. 2017;2017;71(6):1269-1324. doi:
10.1161/HYP.0000000000000065 Google Scholar |
Crossref10.
Howard, G, Cushman, M, Moy, CS, et al. Association of clinical and social factors with excess hypertension risk in black compared with white US adults. JAMA. 2018;320(13):1338-1348. doi:
10.1001/jama.2018.13467 Google Scholar |
Crossref |
Medline11.
Ryan, P, Sawin, KJ. The individual and family self-management theory: background and perspectives on context process and outcomes. Nurs Outlook. 2009;57:217-225.e6. doi:
10.1016/j.outlook.2008.10.004 Google Scholar |
Crossref |
Medline12.
Jack, AI, Dawson, AJ, Begany, KL, et al. fMRI reveals reciprocal inhibition between social and physical cognitive domains. Neuroimage. 2013;66:385-401.
Google Scholar |
Crossref |
Medline |
ISI13.
Moore, SM, Musil, CM, Jack, AI, et al. Characterization of brain signatures to add precision to self-management health information interventions. Nurs Res. 2019;68(2):127-134. doi:
10.1097/NNR.0000000000000331 Google Scholar |
Crossref |
Medline14.
Alberts, H, Pennock, SF. Positive psychology coaching; Manuals for coach and client. 2013. Accessed September 12, 2018.
http://www.positivepsychologyprogram.com Google Scholar15.
Huffman, JC, DuBois, CM, Millstein, RA, Celano, CM, Wexler, D. Positive psychological interventions for patients with type 2 diabetes: rationale, theoretical model, and intervention development. J Diabetes Res. 2015;2015:428349. doi:
10.1155/2015/428349 Google Scholar |
Crossref |
Medline16.
Huntley, CD, Fisher, PL. Examining the role of positive and negative metacognitive beliefs in depression. Scand J Psychol. 2016;57(5):446-452. doi:
10.1111/sjop.12306 Google Scholar |
Crossref |
Medline17.
Muntner, P, Shimbo, D, Carey, RM, et al. Measurement of blood pressure in humans: a scientific statement from the American Heart Association. Hypertension. 2019;73(5):e35-e66. doi:
10.1161/HYP.0000000000000087 Google Scholar |
Crossref18.
Cella, D, Riley, W, Stone, A, et al. The patient-reported outcomes measurement information system (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005-2008. J Clin Epidemiol. 2010;63(11):1179-1194. doi:
10.1016/j.jclinepi.2010.04.011 Google Scholar |
Crossref |
Medline |
ISI19.
Krousel-Wood, M, Peacock, E, Joyce, C, et al. A hybrid 4-item Krousel-Wood medication adherence scale predicts cardiovascular events in older hypertensive adults. J Hypertens. 2019;37(4):851-859. doi:
10.1097/HJH.0000000000001955 Google Scholar |
Crossref |
Medline20.
Bangor, A, Kortum, PT, Miller, JT. An empirical evaluation of the system usability scale. Int J Hum Comput Interact. 2008;24(6):574-594. doi:
10.1080/10447310802205776 Google Scholar |
Crossref |
ISI21.
Gao, M, Kortum, P, Oswald, F. Psychometric evaluation of the USE (usefulness, satisfaction, and ease of use) questionnaire for reliability and validity. Proc Hum Factors Ergon Soc Annu Meet. 2018;62(1):1414-1418. doi:
10.1177/1541931218621322 Google Scholar |
SAGE Journals22.
Van Remoortel, H, Giavedoni, S, Raste, Y, et al. Validity of activity monitors in health and chronic disease: a systematic review. The Int J Behav Nutr Phys Act. 2012;9(1):84.
Google Scholar |
Crossref |
Medline23.
Migueles, JH, Cadenas-Sanchez, C, Ekelund, U, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017;47(9):1821-1845. doi:
10.1007/s40279-017-0716-0 Google Scholar |
Crossref |
Medline24.
Hibbard, JH, Mahoney, ER, Stockard, J, Tusler, M. Development and testing of a short form of the patient activation measure. Health Serv Res. 2005;40(6 Pt 1):1918-1930.
Google Scholar |
Crossref |
Medline25.
Lorig, KR, Sobel, DS, Ritter, PL, Laurent, D, Hobbs, M. Effect of a self-management program on patients with chronic disease. Eff Clin Pract. 2001;4(6):256-262.
Google Scholar |
Medline26.
Bialostosky, K, Wright, JD, Kennedy-Stephenson, J, McDowell, M, Johnson, CL. Dietary intake of macronutrients, micronutrients, and other dietary constituents: United States 1988-94. Vital Health Stat 11. 2002;245:1-158.
Google Scholar |
Medline27.
Erkoc, SB, Isikli, B, Metintas, S, Kalyoncu, C. Hypertension knowledge-level scale (HK-LS): a study on development, validity and reliability. Int J Environ Res Public Health. 2012;9(3):1018-1029. doi:
10.3390/ijerph9031018 Google Scholar |
Crossref |
Medline28.
Watson, D, Clark, LA, Tellegen, A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol. 1988;54:1063-1070.
Google Scholar |
Crossref |
Medline |
ISI29.
Buis, L, Hirzel, L, Dawood, RM, et al. Text messaging to improve hypertension medication adherence in African Americans from primary care and emergency department settings: results from two randomized feasibility studies. JMIR Mhealth Uhealth. 2017;5(2):e9.
Google Scholar |
Crossref |
Medline30.
Morawski, K, Ghazinouri, R, Krumme, A, et al. Association of a smartphone application with medication adherence and blood pressure control: the MedISAFE-BP randomized clinical trial. JAMA Intern Med. 2018;178(6):802-809.
Google Scholar |
Crossref |
Medline31.
Kebede, MM, Pischke, CR. Corrigendum: popular diabetes apps and the impact of diabetes app use on self-care behaviour: a survey among the digital community of persons with diabetes on social media. Front Endocrinol. 2019;10(135):220. doi:
10.3389/fendo.2019.00135 Google Scholar |
Crossref |
Medline
留言 (0)