Covid-19-Induced Dysautonomia: A Menace of Sympathetic Storm

Abdelnabi, M., Eshak, N., Almaghraby, A. (2021). COVID-19 Associated dysautonomia: Not limited to critically Ill! response to: Dysautonomia: An overlooked neurological manifestation in a critically Ill COVID-19 patient. The American Journal of the Medical Sciences, 21, 00192–0. https://doi.org/10.1016/j.amjms.2021.05.021
Google Scholar Ajiro, M., Awaya, T., Kim, Y. J., Iida, K., Denawa, M., Tanaka, N., Kurosawa, R., Matsushima, S., Shibata, S., Sakamoto, T. (2021). Therapeutic manipulation of IKBKAP mis-splicing with a small molecule to cure familial dysautonomia. Nature Communications, 12, 1–12. https://doi.org/10.1038/s41467-021-24705-5
Google Scholar | Medline Alexandris, N., Lagoumintzis, G., Chasapis, C. T., Leonidas, D. D., Papadopoulos, G. E., Tzartos, S. J., Tsatsakis, A., Eliopoulos, E., Poulas, K., Farsalinos, K. (2021). Nicotinic cholinergic system and COVID-19: In silico evaluation of nicotinic acetylcholine receptor agonists as potential therapeutic interventions. Toxicology Reports, 8, 73–83. https://doi.org/10.1016/j.toxrep.2020.12.013
Google Scholar | Crossref | Medline Axelrod, F. B. (2004). Familial dysautonomia. Muscle & Nerve, 29(3), 352–363. https://doi.org/10.1002/mus.10499.
Google Scholar | Crossref | Medline Baig, A. M., Khaleeq, A., Ali, U., Syeda, H. (2020). Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS chemical Neuroscience, 11(7), 995–998. https://doi.org/10.1021/acschemneuro.0c00122
Google Scholar | Crossref | Medline Barizien, N., Le Guen, M., Russel, S., Touche, P., Huang, F., Vallée, A. (2021). Clinical characterization of dysautonomia in long COVID-19 patients. Scientific Reports, 11(1), 1–7. https://doi.org/10.1038/s41598-021-93546-5
Google Scholar | Crossref | Medline Becker, R. C. (2021). Autonomic dysfunction in SARS-COV-2 infection acute and long-term implications COVID-19 editor's Page series. Journal of Thrombosis and Thrombolysis, 1–16. https://doi.org/10.1007/s11239-021-02549-6
Google Scholar | Medline Blitshteyn, S. (2015). Autoimmune markers and autoimmune disorders in patients with postural tachycardia syndrome (POTS). Lupus, 24(13), 1364–1369. https://doi.org/10.1177/0961203315587566
Google Scholar | SAGE Journals | ISI Boone, N., Loriod, B., Bergon, A., Sbai, O., Formisano-Tréziny, C., Gabert, J., Khrestchatisky, M., Nguyen, C., Féron, F., Axelrod, F. B. (2010). Olfactory stem cells, a new cellular model for studying molecular mechanisms underlying familial dysautonomia. PLoS one, 5(12), e15590. https://doi.org/10.1371/journal.pone.0015590
Google Scholar | Crossref | Medline | ISI Carnagarin, R., Lambert, G. W., Kiuchi, M. G., Nolde, J. M., Matthews, V. B., Eikelis, N., Lambert, E. A., Schlaich, M. P. (2019). Effects of sympathetic modulation in metabolic disease. Ann NY Acad Sci, 1454(1), 80–89. https://doi.org/10.1111/nyas.14217
Google Scholar | Crossref | Medline Carod-Artal, F. J. (2018). Infectious diseases causing autonomic dysfunction. Clinical Autonomic Research, 28(1), 67–81. https://doi.org/10.1007/s10286-017-0452-4
Google Scholar | Crossref | Medline Chakraborty, T., Kramer, C. L., Wijdicks, E. F., Rabinstein, A. A. (2020). Dysautonomia in guillain–barré syndrome: Prevalence, clinical spectrum, and outcomes. Neurocritical Care, 32(1), 113–120. https://doi.org/10.1007/s12028-019-00781-w
Google Scholar | Crossref | Medline Chen, H., He, Z., Bagri, A., Tessier-Lavigne, M. (1998). Semaphorin–neuropilin interactions underlying sympathetic axon responses to class III semaphorins. Neuron, 21(6), 1283–1290. https://doi.org/10.1016/s0896-6273(00)80648-0
Google Scholar | Crossref | Medline Cornejo, M. P., De Francesco, P. N., Romero, G. G., Portiansky, E. L., Zigman, J. M., Reynaldo, M., Perello, M. (2018). Ghrelin receptor signaling targets segregated clusters of neurons within the nucleus of the solitary tract. Brain Structure and Function, 223(7), 3133–3147. https://doi.org/10.1007/s00429-018-1682-5
Google Scholar | Crossref | Medline Crook, H, Raza, S, Nowell, J, Young, M, Edison, P (2021). Long covid—mechanisms, risk factors, and management. bmj, 374(n1648). https://doi.org/10.1136/bmj.n1648.
Google Scholar | Medline Dai, Y, Qiang, W, Gui, Y, Tan, X, Pei, T, Lin, K, Cai, S, Sun, L, Ning, G, Wang, J (2021) A large-scale transcriptional study reveals inhibition of COVID-19 related cytokine storm by traditional Chinese medicines. Science bulletin, 66(9), 884–888. https://doi.org/10.1016/j.scib.2021.01.005
Google Scholar | Crossref | Medline Dani, M., Dirksen, A., Taraborrelli, P., Torocastro, M., Panagopoulos, D., Sutton, R., Lim, P. B. (2021). Autonomic dysfunction in ‘long COVID’: Rationale, physiology and management strategies. Clinical Medicine, 21(1), e63–e67. https://doi.org/10.7861/clinmed.2020-0896
Google Scholar | Crossref | Medline Davies, J., Randeva, H. S., Chatha, K., Hall, M., Spandidos, D. A., Karteris, E., Kyrou, I. (2020). Neuropilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19. Molecular Medicine Reports, 22(5), 4221–4226. https://doi.org/10.3892/mmr.2020.11510
Google Scholar | Medline Del Rio, R., Marcus, N. J., Inestrosa, N. C. (2020). Potential role of autonomic dysfunction in covid-19 morbidity and mortality. Frontiers in Physiology, 11(1248). ecollection https://doi.org/10.3389/fphys.2020.561749
Google Scholar Dey, J., Alam, M. T., Chandra, S., Gupta, J., Ray, U., Srivastava, A. K., Tripathi, P. P. (2021). Neuroinvasion of SARS-CoV-2 may play a role in the breakdown of the respiratory center of the brain. Journal of Medical Virology, 93(3), 1296–1303. https://doi.org/10.1002/jmv.26521
Google Scholar | Crossref | Medline Díaz, H. S., Toledo, C., Andrade, D. C., Marcus, N. J., Del Rio, R. (2020). Neuroinflammation in heart failure: New insights for an old disease. The Journal of Physiology, 598(1), 33–59. https://doi.org/10.1113/JP278864
Google Scholar | Crossref | Medline Ellul, M. A., Benjamin, L., Singh, B., Lant, S., Michael, B. D., Easton, A., Kneen, R., Defres, S., Sejvar, J., Solomon, T. (2020). Neurological associations of COVID-19. The Lancet Neurology, 19(9), 767–783. https://doi.org/10.1016/S1474-4422(20)30221-0
Google Scholar | Crossref | Medline Feng, M., Xiang, B., Fan, L., Wang, Q., Xu, W., Xiang, H. (2020). Interrogating autonomic peripheral nervous system neurons with viruses–A literature review. Journal of Neuroscience Methods, 346, 108958. https://doi.org/10.1016/j.jneumeth.2020.108958
Google Scholar | Crossref | Medline Fu, Q., VanGundy, T. B., Galbreath, M. M., Shibata, S., Jain, M., Hastings, J. L., Bhella, P. S., Levine, B. D. (2010). Cardiac origins of the postural orthostatic tachycardia syndrome. Journal of the American College of Cardiology, 55(25), 2858–2868. https://doi.org/10.1016/j.jacc.2010.02.043
Google Scholar | Crossref | Medline | ISI Goldstein, D. S. (2021). The possible association between COVID-19 and postural tachycardia syndrome. Heart Rhythm, 18(4), 508–509. https://doi.org/10.1016/j.hrthm.2020.12.007
Google Scholar | Crossref | Medline González-Hermosillo, J. A., Martínez-López, J. P., Carrillo-Lampón, S. A., Ruiz-Ojeda, D., Herrera-Ramírez, S., Amezcua-Guerra, L. M., MdR, M.-A. (2021). Post-Acute COVID-19 symptoms, a potential link with myalgic encephalomyelitis/chronic fatigue syndrome: A 6-month survey in a Mexican cohort. Brain Sciences, 11(6), 760–766. https://doi.org/10.3390/brainsci11060760
Google Scholar | Crossref | Medline Goodman, B. P., Khoury, J. A., Blair, J. E., Grill, M. F. (2021a). COVID-19 dysautonomia. Frontiers in Neurology, 12(624968), 543. https://doi.org/10.3389/fneur.2021.624968.
Google Scholar Gurwitz, D. (2020). Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Development Research, 81(5), 537–540. https://doi.org/10.1002/ddr.21656
Google Scholar | Crossref | Medline Hendrickson, J. E., Hendrickson, E. T., Gehrie, E. A., Sidhu, D., Wallukat, G., Schimke, I., Tormey, C. A. (2016). Complex regional pain syndrome and dysautonomia in a 14-year-old girl responsive to therapeutic plasma exchange. Journal of Clinical Apheresis, 31(4), 368–374. https://doi.org/10.1002/jca.21407
Google Scholar | Crossref | Medline Hinduja, A., Moutairou, A., Calvet, J.-H. (2021). Sudomotor dysfunction in patients recovered from COVID-19. Neurophysiologie Clinique, 51(2), 193–196. https://doi.org/10.1016/j.neucli.2021.01.003
Google Scholar | Crossref | Medline Huston, J. M., Ochani, M., Rosas-Ballina, M., Liao, H., Ochani, K., Pavlov, V. A., Gallowitsch-Puerta, M., Ashok, M., Czura, C. J., Foxwell, B. (2006). Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. The Journal of Experimental Medicine, 203(7), 1623–1628. https://doi.org/10.1084/jem.20052362
Google Scholar | Crossref | Medline Karahan, M., Demirtaş, A. A., Hazar, L., Erdem, S., Ava, S., Dursun, M. E., Keklikçi, U. (2021). Autonomic dysfunction detection by an automatic pupillometer as a non-invasive test in patients recovered from COVID-19. Graefe's Archive for Clinical and Experimental Ophthalmology, 257(9), 2821–2826. https://doi.org/10.1007/s00417-021-05209-w
Google Scholar | Crossref Khatoon, F., Prasad, K., Kumar, V. (2020). Neurological manifestations of COVID-19: Available evidences and a new paradigm. Journal of Neurovirology, 26(5), 619–630. https://doi.org/10.1007/s13365-020-00895-4
Google Scholar | Crossref | Medline Konig, M. F., Powell, M., Staedtke, V., Bai, R.-Y., Thomas, D. L., Fischer, N., Huq, S., Khalafallah, A. M., Koenecke, A., Xiong, R. (2020). Preventing cytokine storm syndrome in COVID-19 using α-1 adrenergic receptor antagonists. The Journal of Clinical Investigation, 130(7), 3345–3347. https://doi.org/10.1172/JCI139642
Google Scholar | Crossref | Medline Kyrou, I., Randeva, H. S., Spandidos, D. A., Karteris, E. (2021). Not only ACE2—the quest for additional host cell mediators of SARS-CoV-2 infection: Neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal transduction and targeted therapy, 168(6), 1–3. https://doi.org/10.1038/s41392-020-00460-9
Google Scholar Lara, A., Damasceno, D. D., Pires, R., Gros, R., Gomes, E. R., Gavioli, M., Lima, R. F., Guimaraes, D., Lima, P., Bueno Jr, C. R. (2010). Dysautonomia due to reduced cholinergic neurotransmission causes cardiac remodeling and heart failure. Molecular and Cellular Biology, 30(7), 1746–1756. https://doi.org/10.1128/MCB.00996-09
Google Scholar | Crossref | Medline Leonardi, M., Padovani, A., McArthur, J. C. (2020). Neurological manifestations associated with COVID-19: A review and a call for action. Journal of Neurology, 267(6), 1573–1576. https://doi.org/10.1007/s00415-020-09896-z
Google Scholar | Crossref | Medline Li, H., Yu, X., Liles, C., Khan, M., Vanderlinde-Wood, M., Galloway, A., Zillner, C., Benbrook, A., Reim, S., Collier, D. (2014). Autoimmune basis for postural tachycardia syndrome. Journal of the American Heart Association, 3(1), e000755. https://doi.org/10.1161/JAHA.113.000755
Google Scholar | Crossref | Medline Li, Y. C., Bai, W. Z., Hashikawa, T. (2020). The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. Journal of Medical Virology, 92(6), 552–555. https://doi.org/10.1002/jmv.25728
Google Scholar | Crossref | Medline Liu, S.-D., Zhong, L.-P., He, J., Zhao, Y.-X. (2021). Targeting neuropilin-1 interactions is a promising anti-tumor strategy. Chinese Medical Journal, 134(6), 508–517. https://doi.org/10.1097/CM9.0000000000001200
Google Scholar | Crossref Lo, Y. L. (2021). COVID-19, fatigue, and dysautonomia. Journal of Medical Virology, 93,(3), 1213–1213. https://doi.org/10.1002/jmv.26552
Google Scholar | Crossref | Medline Lumb, R., Tata, M., Xu, X., Joyce, A., Marchant, C., Harvey, N., Ruhrberg, C., Schwarz, Q. (2018). Neuropilins guide preganglionic sympathetic axons and chromaffin cell precursors to establish the adrenal medulla. Development (Cambridge, England), 145(21). https://doi.org/10.1242/dev.162552
Google Scholar |

留言 (0)

沒有登入
gif