Abdelnabi, M., Eshak, N., Almaghraby, A. (2021). COVID-19 Associated dysautonomia: Not limited to critically Ill! response to: Dysautonomia: An overlooked neurological manifestation in a critically Ill COVID-19 patient. The American Journal of the Medical Sciences, 21, 00192–0.
https://doi.org/10.1016/j.amjms.2021.05.021 Google Scholar Ajiro, M., Awaya, T., Kim, Y. J., Iida, K., Denawa, M., Tanaka, N., Kurosawa, R., Matsushima, S., Shibata, S., Sakamoto, T. (2021). Therapeutic manipulation of IKBKAP mis-splicing with a small molecule to cure familial dysautonomia. Nature Communications, 12, 1–12.
https://doi.org/10.1038/s41467-021-24705-5 Google Scholar |
Medline Alexandris, N., Lagoumintzis, G., Chasapis, C. T., Leonidas, D. D., Papadopoulos, G. E., Tzartos, S. J., Tsatsakis, A., Eliopoulos, E., Poulas, K., Farsalinos, K. (2021). Nicotinic cholinergic system and COVID-19: In silico evaluation of nicotinic acetylcholine receptor agonists as potential therapeutic interventions. Toxicology Reports, 8, 73–83.
https://doi.org/10.1016/j.toxrep.2020.12.013 Google Scholar |
Crossref |
Medline Axelrod, F. B. (2004). Familial dysautonomia. Muscle & Nerve, 29(3), 352–363.
https://doi.org/10.1002/mus.10499. Google Scholar |
Crossref |
Medline Baig, A. M., Khaleeq, A., Ali, U., Syeda, H. (2020). Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS chemical Neuroscience, 11(7), 995–998.
https://doi.org/10.1021/acschemneuro.0c00122 Google Scholar |
Crossref |
Medline Barizien, N., Le Guen, M., Russel, S., Touche, P., Huang, F., Vallée, A. (2021). Clinical characterization of dysautonomia in long COVID-19 patients. Scientific Reports, 11(1), 1–7.
https://doi.org/10.1038/s41598-021-93546-5 Google Scholar |
Crossref |
Medline Becker, R. C. (2021). Autonomic dysfunction in SARS-COV-2 infection acute and long-term implications COVID-19 editor's Page series. Journal of Thrombosis and Thrombolysis, 1–16.
https://doi.org/10.1007/s11239-021-02549-6 Google Scholar |
Medline Blitshteyn, S. (2015). Autoimmune markers and autoimmune disorders in patients with postural tachycardia syndrome (POTS). Lupus, 24(13), 1364–1369.
https://doi.org/10.1177/0961203315587566 Google Scholar |
SAGE Journals |
ISI Boone, N., Loriod, B., Bergon, A., Sbai, O., Formisano-Tréziny, C., Gabert, J., Khrestchatisky, M., Nguyen, C., Féron, F., Axelrod, F. B. (2010). Olfactory stem cells, a new cellular model for studying molecular mechanisms underlying familial dysautonomia. PLoS one, 5(12), e15590.
https://doi.org/10.1371/journal.pone.0015590 Google Scholar |
Crossref |
Medline |
ISI Carnagarin, R., Lambert, G. W., Kiuchi, M. G., Nolde, J. M., Matthews, V. B., Eikelis, N., Lambert, E. A., Schlaich, M. P. (2019). Effects of sympathetic modulation in metabolic disease. Ann NY Acad Sci, 1454(1), 80–89.
https://doi.org/10.1111/nyas.14217 Google Scholar |
Crossref |
Medline Carod-Artal, F. J. (2018). Infectious diseases causing autonomic dysfunction. Clinical Autonomic Research, 28(1), 67–81.
https://doi.org/10.1007/s10286-017-0452-4 Google Scholar |
Crossref |
Medline Chakraborty, T., Kramer, C. L., Wijdicks, E. F., Rabinstein, A. A. (2020). Dysautonomia in guillain–barré syndrome: Prevalence, clinical spectrum, and outcomes. Neurocritical Care, 32(1), 113–120.
https://doi.org/10.1007/s12028-019-00781-w Google Scholar |
Crossref |
Medline Chen, H., He, Z., Bagri, A., Tessier-Lavigne, M. (1998). Semaphorin–neuropilin interactions underlying sympathetic axon responses to class III semaphorins. Neuron, 21(6), 1283–1290.
https://doi.org/10.1016/s0896-6273(00)80648-0 Google Scholar |
Crossref |
Medline Cornejo, M. P., De Francesco, P. N., Romero, G. G., Portiansky, E. L., Zigman, J. M., Reynaldo, M., Perello, M. (2018). Ghrelin receptor signaling targets segregated clusters of neurons within the nucleus of the solitary tract. Brain Structure and Function, 223(7), 3133–3147.
https://doi.org/10.1007/s00429-018-1682-5 Google Scholar |
Crossref |
Medline Crook, H, Raza, S, Nowell, J, Young, M, Edison, P (2021). Long covid—mechanisms, risk factors, and management. bmj, 374(n1648).
https://doi.org/10.1136/bmj.n1648. Google Scholar |
Medline Dai, Y, Qiang, W, Gui, Y, Tan, X, Pei, T, Lin, K, Cai, S, Sun, L, Ning, G, Wang, J (2021) A large-scale transcriptional study reveals inhibition of COVID-19 related cytokine storm by traditional Chinese medicines. Science bulletin, 66(9), 884–888.
https://doi.org/10.1016/j.scib.2021.01.005 Google Scholar |
Crossref |
Medline Dani, M., Dirksen, A., Taraborrelli, P., Torocastro, M., Panagopoulos, D., Sutton, R., Lim, P. B. (2021). Autonomic dysfunction in ‘long COVID’: Rationale, physiology and management strategies. Clinical Medicine, 21(1), e63–e67.
https://doi.org/10.7861/clinmed.2020-0896 Google Scholar |
Crossref |
Medline Davies, J., Randeva, H. S., Chatha, K., Hall, M., Spandidos, D. A., Karteris, E., Kyrou, I. (2020). Neuropilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19. Molecular Medicine Reports, 22(5), 4221–4226.
https://doi.org/10.3892/mmr.2020.11510 Google Scholar |
Medline Del Rio, R., Marcus, N. J., Inestrosa, N. C. (2020). Potential role of autonomic dysfunction in covid-19 morbidity and mortality. Frontiers in Physiology, 11(1248). ecollection
https://doi.org/10.3389/fphys.2020.561749 Google Scholar Dey, J., Alam, M. T., Chandra, S., Gupta, J., Ray, U., Srivastava, A. K., Tripathi, P. P. (2021). Neuroinvasion of SARS-CoV-2 may play a role in the breakdown of the respiratory center of the brain. Journal of Medical Virology, 93(3), 1296–1303.
https://doi.org/10.1002/jmv.26521 Google Scholar |
Crossref |
Medline Díaz, H. S., Toledo, C., Andrade, D. C., Marcus, N. J., Del Rio, R. (2020). Neuroinflammation in heart failure: New insights for an old disease. The Journal of Physiology, 598(1), 33–59.
https://doi.org/10.1113/JP278864 Google Scholar |
Crossref |
Medline Ellul, M. A., Benjamin, L., Singh, B., Lant, S., Michael, B. D., Easton, A., Kneen, R., Defres, S., Sejvar, J., Solomon, T. (2020). Neurological associations of COVID-19. The Lancet Neurology, 19(9), 767–783.
https://doi.org/10.1016/S1474-4422(20)30221-0 Google Scholar |
Crossref |
Medline Feng, M., Xiang, B., Fan, L., Wang, Q., Xu, W., Xiang, H. (2020). Interrogating autonomic peripheral nervous system neurons with viruses–A literature review. Journal of Neuroscience Methods, 346, 108958.
https://doi.org/10.1016/j.jneumeth.2020.108958 Google Scholar |
Crossref |
Medline Fu, Q., VanGundy, T. B., Galbreath, M. M., Shibata, S., Jain, M., Hastings, J. L., Bhella, P. S., Levine, B. D. (2010). Cardiac origins of the postural orthostatic tachycardia syndrome. Journal of the American College of Cardiology, 55(25), 2858–2868.
https://doi.org/10.1016/j.jacc.2010.02.043 Google Scholar |
Crossref |
Medline |
ISI Goldstein, D. S. (2021). The possible association between COVID-19 and postural tachycardia syndrome. Heart Rhythm, 18(4), 508–509.
https://doi.org/10.1016/j.hrthm.2020.12.007 Google Scholar |
Crossref |
Medline González-Hermosillo, J. A., Martínez-López, J. P., Carrillo-Lampón, S. A., Ruiz-Ojeda, D., Herrera-Ramírez, S., Amezcua-Guerra, L. M., MdR, M.-A. (2021). Post-Acute COVID-19 symptoms, a potential link with myalgic encephalomyelitis/chronic fatigue syndrome: A 6-month survey in a Mexican cohort. Brain Sciences, 11(6), 760–766.
https://doi.org/10.3390/brainsci11060760 Google Scholar |
Crossref |
Medline Goodman, B. P., Khoury, J. A., Blair, J. E., Grill, M. F. (2021a). COVID-19 dysautonomia. Frontiers in Neurology, 12(624968), 543.
https://doi.org/10.3389/fneur.2021.624968.
Google Scholar Gurwitz, D. (2020). Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Development Research, 81(5), 537–540.
https://doi.org/10.1002/ddr.21656 Google Scholar |
Crossref |
Medline Hendrickson, J. E., Hendrickson, E. T., Gehrie, E. A., Sidhu, D., Wallukat, G., Schimke, I., Tormey, C. A. (2016). Complex regional pain syndrome and dysautonomia in a 14-year-old girl responsive to therapeutic plasma exchange. Journal of Clinical Apheresis, 31(4), 368–374.
https://doi.org/10.1002/jca.21407 Google Scholar |
Crossref |
Medline Hinduja, A., Moutairou, A., Calvet, J.-H. (2021). Sudomotor dysfunction in patients recovered from COVID-19. Neurophysiologie Clinique, 51(2), 193–196.
https://doi.org/10.1016/j.neucli.2021.01.003 Google Scholar |
Crossref |
Medline Huston, J. M., Ochani, M., Rosas-Ballina, M., Liao, H., Ochani, K., Pavlov, V. A., Gallowitsch-Puerta, M., Ashok, M., Czura, C. J., Foxwell, B. (2006). Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. The Journal of Experimental Medicine, 203(7), 1623–1628.
https://doi.org/10.1084/jem.20052362 Google Scholar |
Crossref |
Medline Karahan, M., Demirtaş, A. A., Hazar, L., Erdem, S., Ava, S., Dursun, M. E., Keklikçi, U. (2021). Autonomic dysfunction detection by an automatic pupillometer as a non-invasive test in patients recovered from COVID-19. Graefe's Archive for Clinical and Experimental Ophthalmology, 257(9), 2821–2826.
https://doi.org/10.1007/s00417-021-05209-w Google Scholar |
Crossref Khatoon, F., Prasad, K., Kumar, V. (2020). Neurological manifestations of COVID-19: Available evidences and a new paradigm. Journal of Neurovirology, 26(5), 619–630.
https://doi.org/10.1007/s13365-020-00895-4 Google Scholar |
Crossref |
Medline Konig, M. F., Powell, M., Staedtke, V., Bai, R.-Y., Thomas, D. L., Fischer, N., Huq, S., Khalafallah, A. M., Koenecke, A., Xiong, R. (2020). Preventing cytokine storm syndrome in COVID-19 using α-1 adrenergic receptor antagonists. The Journal of Clinical Investigation, 130(7), 3345–3347.
https://doi.org/10.1172/JCI139642 Google Scholar |
Crossref |
Medline Kyrou, I., Randeva, H. S., Spandidos, D. A., Karteris, E. (2021). Not only ACE2—the quest for additional host cell mediators of SARS-CoV-2 infection: Neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal transduction and targeted therapy, 168(6), 1–3.
https://doi.org/10.1038/s41392-020-00460-9 Google Scholar Lara, A., Damasceno, D. D., Pires, R., Gros, R., Gomes, E. R., Gavioli, M., Lima, R. F., Guimaraes, D., Lima, P., Bueno Jr, C. R. (2010). Dysautonomia due to reduced cholinergic neurotransmission causes cardiac remodeling and heart failure. Molecular and Cellular Biology, 30(7), 1746–1756.
https://doi.org/10.1128/MCB.00996-09 Google Scholar |
Crossref |
Medline Leonardi, M., Padovani, A., McArthur, J. C. (2020). Neurological manifestations associated with COVID-19: A review and a call for action. Journal of Neurology, 267(6), 1573–1576.
https://doi.org/10.1007/s00415-020-09896-z Google Scholar |
Crossref |
Medline Li, H., Yu, X., Liles, C., Khan, M., Vanderlinde-Wood, M., Galloway, A., Zillner, C., Benbrook, A., Reim, S., Collier, D. (2014). Autoimmune basis for postural tachycardia syndrome. Journal of the American Heart Association, 3(1), e000755.
https://doi.org/10.1161/JAHA.113.000755 Google Scholar |
Crossref |
Medline Li, Y. C., Bai, W. Z., Hashikawa, T. (2020). The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. Journal of Medical Virology, 92(6), 552–555.
https://doi.org/10.1002/jmv.25728 Google Scholar |
Crossref |
Medline Liu, S.-D., Zhong, L.-P., He, J., Zhao, Y.-X. (2021). Targeting neuropilin-1 interactions is a promising anti-tumor strategy. Chinese Medical Journal, 134(6), 508–517.
https://doi.org/10.1097/CM9.0000000000001200 Google Scholar |
Crossref Lo, Y. L. (2021). COVID-19, fatigue, and dysautonomia. Journal of Medical Virology, 93,(3), 1213–1213.
https://doi.org/10.1002/jmv.26552 Google Scholar |
Crossref |
Medline Lumb, R., Tata, M., Xu, X., Joyce, A., Marchant, C., Harvey, N., Ruhrberg, C., Schwarz, Q. (2018). Neuropilins guide preganglionic sympathetic axons and chromaffin cell precursors to establish the adrenal medulla. Development (Cambridge, England), 145(21).
https://doi.org/10.1242/dev.162552 Google Scholar |
留言 (0)