Agrawal, A., Agrawal, S., Tay, J., Gupta, S. (2008). Biology of dendritic cells in aging. Journal of Clinical Immunology, 28(1), 14–20.
https://doi.org/10.1007/s10875-007-9127-6 Google Scholar |
Crossref |
Medline Alsene, K. M., Bakshi, V. P. (2011). Pharmacological stimulation of locus coeruleus reveals a new antipsychotic-responsive pathway for deficient sensorimotor gating. Neuropsychopharmacology, 36(8), 1656–1667.
https://doi.org/10.1038/npp.2011.47 Google Scholar |
Crossref |
Medline Alsene, K. M., Carasso, B. S., Connors, E. E., Bakshi, V. P. (2006). Disruption of prepulse inhibition after stimulation of central but not peripheral alpha-1 adrenergic receptors. Neuropsychopharmacology, 31(10), 2150–2161.
https://doi.org/10.1038/sj.npp.1300989 Google Scholar |
Crossref |
Medline Bartholini, J., Constantinidis, J., Puig, M., Tissot, R., Pletscher, A. (1975). The stereoisomers of 3,4-dihydroxyphenylserine as precursors of norepinephrine. Journal of Pharmacology and Experimental Therapeutics, 193(2), 523–532.
Google Scholar |
Medline Biaggioni, I., Robertson, D. (1987). Endogenous restoration of noradrenaline by precursor therapy in dopamine-beta-hydroxylase deficiency. Lancet, 2(8569), 1170–1172.
https://doi.org/10.1016/s0140-6736(87)91317-1 Google Scholar |
Crossref |
Medline Braff, D. L., Geyer, M. A., Swerdlow, N. R. (2001). Human studies of prepulse inhibition of startle: Normal subjects, patient groups, and pharmacological studies. Psychopharmacology, 156(2-3), 234–258.
https://doi.org/10.1007/s002130100810 Google Scholar |
Crossref |
Medline |
ISI Brannan, T., Bhardwaj, A., Yahr, M. D. (1990). L-threodops increases extracellular norepinephrine levels in the brain: An in vivo study. Neurology, 40(7), 1134–1135.
https://doi.org/10.1212/wnl.40.7.1134 Google Scholar |
Crossref |
Medline Brunet, A., Datta, S. R., Greenberg, M. E. (2001). Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Current Opinion in Neurobiology, 11(3), 297–305.
https://doi.org/10.1016/s0959-4388(00)00211-7 Google Scholar |
Crossref |
Medline Carasso, B. S., Bakshi, V. P., Geyer, M. A. (1998). Disruption in prepulse inhibition after alpha-1 adrenoceptor stimulation in rats. Neuropharmacology, 37(3), 401–404.
https://doi.org/10.1016/s0028-3908(98)00051-3 Google Scholar |
Crossref |
Medline Chan-Palay, V., Asan, E. (1989). Quantitation of catecholamine neurons in the locus coeruleus in human brains of normal young and older adults and in depression. Journal of Comparative Neurology, 287(3), 357–372.
https://doi.org/10.1002/cne.902870307 Google Scholar |
Crossref |
Medline Chen, M. J., Russo-Neustadt, A. A. (2005). Exercise activates the phosphatidylinositol 3-kinase pathway. Molecular Brain Research, 135(1-2), 181–193.
https://doi.org/10.1016/j.molbrainres.2004.12.001 Google Scholar |
Crossref |
Medline Chen, M. J., Russo-Neustadt, A. A. (2007). Nitric oxide signaling participates in norepinephrine-induced activity of neuronal intracellular survival pathways. Life Sciences, 81(16), 1280–1290.
https://doi.org/10.1016/j.lfs.2007.09.003 Google Scholar |
Crossref |
Medline Choi, H. K., Won, L. A., Kontur, P. J., Hammond, D. N., Fox, A. P., Wainer, B. H., Hoffmann, P. C., Heller, A. (1991). Immortalization of embryonic mesencephalic dopaminergic neurons by somatic cell fusion. Brain Research, 552(1), 67–76.
https://doi.org/10.1016/0006-8993(91)90661-e Google Scholar |
Crossref |
Medline |
ISI Chouliaras, L., van den Hove, D. L., Kenis, G., Draanen, M., Hof, P. R., van Os, J., Steinbusch, H. W., Schmitz, C., Rutten, B. P. (2013). Histone deacetylase 2 in the mouse hippocampus: Attenuation of age-related increase by caloric restriction. Current Alzheimer Research, 10(8), 868–876.
https://doi.org/10.2174/1567205011310080009 Google Scholar |
Crossref |
Medline Clarke, R. W., Harris, J. (2002). RX 821002 as a tool for physiological investigation of alpha(2)-adrenoceptors. CNS Drug Reviews, 8(2), 177–192.
https://doi.org/10.1111/j.1527-3458.2002.tb00222.x Google Scholar |
Crossref |
Medline Colvis, C. M., Pollock, J. D., Goodman, R. H., Impey, S., Dunn, J., Mandel, G., Champagne, F., Mayford, M., Korzus, E., Kumar, A., Renthal, W., Theobald, D., Nestler, E. J. (2005). Epigenetic mechanisms and gene networks in the nervous system. Journal of Neuroscience, 25(45), 10379–10389.
https://doi.org/10.1523/JNEUROSCI.4119-05.2005 Google Scholar |
Crossref |
Medline Council, N. R. (2011). Guide for the care and use of laboratory animals. Washington D.C.: National Academies Press.
Google Scholar Cruz-Muros, I., Afonso-Oramas, D., Abreu, P., Perez-Delgado, M. M., Rodriguez, M., Gonzalez-Hernandez, T. (2009). Aging effects on the dopamine transporter expression and compensatory mechanisms. Neurobiology of Aging, 30(6), 973–986.
httpS://doi.org/10.1016/j.neurobiolaging.2007.09.009 Google Scholar |
Crossref |
Medline Dang, V., Medina, B., Das, D., Moghadam, S., Martin, K. J., Lin, B., Nail, P., Patel, D., Nosheny, R., Ashford, J. W., Salehi, A. (2014). Formoterol, a long-acting beta2 adrenergic agonist, improves cognitive function and promotes dendritic complexity in a mouse model of down syndrome. Biological Psychiatry, 75(3), 179–188.
https://doi.org/10.1016/j.biopsych.2013.05.024 Google Scholar |
Crossref |
Medline Debeir, T., Marien, M., Ferrario, J., Rizk, P., Prigent, A., Colpaert, F., Raisman-Vozari, R. (2004). In vivo upregulation of endogenous NGF in the rat brain by the alpha2-adrenoreceptor antagonist dexefaroxan: Potential role in the protection of the basalocortical cholinergic system during neurodegeneration. Experimental Neurology, 190(2), 384–395.
https://doi.org/10.1016/j.expneurol.2004.08.023 Google Scholar |
Crossref |
Medline Delaville, C., Deurwaerdere, P. D., Benazzouz, A. (2011). Noradrenaline and Parkinson's disease. Frontiers in Systems Neuroscience, 5(31), 1.
https://doi.org/10.3389/fnsys.2011.00031 Google Scholar |
Medline Deng, M., Tufan, T., Raza, M. U., Jones, T. C., Zhu, M. Y. (2016). MicroRNAs 29b and 181a down-regulate the expression of the norepinephrine transporter and glucocorticoid receptors in PC12 cells. Journal of Neurochemistry, 39(2), 197–207.
https://doi.org/10.1111/jnc.13761 Google Scholar |
Crossref Donaldson, I., Dolphin, A., Jenner, P., Mardsen, C. K., Pycock, C. (1975). Proceedings: The role of dopamine in rotational behaviour produced by unilateral lesions of the locus coeruleus. British Journal of Pharmacology, 55(2), 290P.
Google Scholar |
Medline Fan, Y., Zeng, F., Brown, R. W., Price, J. B., Jones, T. C., Zhu, M. Y. (2020). Transcription factors Phox2a/2b upregulate expression of noradrenergic and dopaminergic phenotypes in aged Rat brains. Neurotoxicity Research, 38(3), 793–807.
https://doi.org/10.1007/s12640-020-00250-9 Google Scholar |
Crossref |
Medline Fawcett, J. P., Bamji, S. X., Causing, C. G., Aloyz, R., Ase, A. R., Reader, T. A., McLean, J. H., Miller, F. D. (1998). Functional evidence that BDNF is an anterograde neuronal trophic factor in the CNS. Journal of Neuroscience, 18(8), 2808–2821.
https://doi.org/10.1523/JNEUROSCI.18-08-02808 Google Scholar |
Crossref |
Medline Fearnley, J. M., Lees, A. J. (1991). Ageing and Parkinson's disease: Substantia nigra regional selectivity. Brain, 114(Pt 5), 2283–2301.
https://doi.org/10.1093/brain/114.5.2283 Google Scholar |
Crossref |
Medline Felten, D. L., Felten, S. Y., Steece-Collier, K., Date, I., Clemens, J. A. (1992). Age-related decline in the dopaminergic nigrostriatal system: The oxidative hypothesis and protective strategies. Annals of Neurology, 32(S1), S133–S136.
https://doi.org/10.1002/ana.410320723 Google Scholar |
Crossref |
Medline Fornai, F., Torracca, M. T., Bassi, L., D'Errigo, D. A., Scalori, V., Corsini, G. U. (1996). Norepinephrine loss selectively enhances chronic nigrostriatal dopamine depletion in mice and rats. Brain Research, 735(2), 349–353.
https://doi.org/10.1016/0006-8993(96)00891-8 Google Scholar |
Crossref |
Medline Fukada, K., Endo, T., Yokoe, M., Hamasaki, T., Hazama, T., Sakoda, S. (2013). L-threo-3,4-dihydroxyphenylserine (L-DOPS) co-administered with entacapone improves freezing of gait in Parkinson's disease. Medical Hypotheses, 80(2), 209–212.
https://doi.org/10.1016/j.mehy.2012.11.031 Google Scholar |
Crossref |
Medline Gao, S. M., Chen, C. Q., Wang, L. Y., Hong, L. L., Wu, J. B., Dong, P. H., Yu, F. J. (2013). Histone deacetylases inhibitor sodium butyrate inhibits JAK2/STAT signaling through upregulation of SOCS1 and SOCS3 mediated by HDAC8 inhibition in myeloproliferative neoplasms. Experimental Hematology, 41(3), 261–270.
https://doi.org/10.1016/j.exphem.2012.10.012 Google Scholar |
Crossref |
Medline Geyer, M. A., Krebs-Thomson, K., Braff, D. L., Swerdlow, N. R. (2001). Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: A decade in review. Psychopharmacology, 156(2-3), 117–154.
https://doi.org/10.1007/s002130100811 Google Scholar |
Crossref |
Medline |
ISI Gill, W. D., Shelton, H. W., Burgess, K. C., Brown, R. W. (2020). Effects of an adenosine A2A agonist on the rewarding associative properties of nicotine and neural plasticity in a rodent model of schizophrenia. Journal of Psychopharmacology, 34(1), 137–144.
https://doi.org/10.1177/0269881119885917 Google Scholar |
SAGE Journals |
ISI Gobert, A., Billiras, R., Cistarelli, L., Millan, M. J. (2004). Quantification and pharmacological characterization of dialysate levels of noradrenaline in the striatum of freely-moving rats: Release from adrenergic terminals and modulation by alpha2-autoreceptors. Journal of Neuroscience Methods, 140(1-2), 141–152.
https://doi.org/10.1016/j.jneumeth.2004.04.040 Google Scholar |
Crossref |
Medline Graham, F. K. (1975). Presidential address, 1974. The more or less startling effects of weak prestimulation. Psychophysiology, 12(3), 238–248.
https://doi.org/10.1111/j.1469-8986.1975.tb01284.x Google Scholar |
Crossref |
Medline Grenhoff, J., Nisell, M., Ferre, S., Aston-Jones, G., Svensson, T. H. (1993). Noradrenergic modulation of midbrain dopamine cell firing elicited by stimulation of the locus coeruleus in the rat. Journal of Neural Transmission/General Section, 93(1), 11–25.
https://doi.org/10.1007/BF01244934 Google Scholar |
Crossref |
Medline Hassani, O. K., Rymar, V. V., Nguyen, K. Q., Huo, L., Cloutier, J. F., Miller, F. D., Sadikot, A. F. (2020). The noradrenergic system is necessary for survival of vulnerable midbrain dopaminergic neurons: Implications for development and Parkinson's disease. Neurobiology of Aging, 85, 22–37.
https://doi.org/10.1016/j.neurobiolaging.2019.09.014 Google Scholar |
Crossref |
Medline Haycock, J. W., Becker, L., Ang, L., Furukawa, Y., Hornykiewicz, O., Kish, S. J. (2003). Marked disparity between age-related changes in dopamine and other presynaptic dopaminergic markers in human striatum. Journal of Neurochemistry, 87(3), 574–585.
https://doi.org/10.1046/j.1471-4159.2003.02017.x Google Scholar |
Crossref |
Medline Hertel, P., Fagerquist, M. V., Svensson, T. H. (1999). Enhanced cortical dopamine output and antipsychotic-like effects of raclopride by alpha2 adrenoceptor blockade. Science, 286(5437), 105–107.
https://doi.org/10.1126/science.286.5437.105 Google Scholar |
Crossref |
Medline Himi, T., Cao, M., Mori, N. (1995). Reduced expression of the molecular markers of dopaminergic neuronal atrophy in the aging rat brain. The Journals of Gerontology: Series A, Biological Sciences and Medical Sciences, 50(4), B193–B200.
https://doi.org/10.1093/gerona/50a.4.b193 Google Scholar |
Crossref |
Medline Huang, J., Tufan, T., Deng, M., Wright, G., Zhu, M. Y. (2015). Corticotropin releasing factor up-regulates the expression and function of norepinephrine transporter in SK-N-BE (2) M17 cells. Journal of Neurochemistry, 135(1), 38–49.
https://doi.org/10.1111/jnc.13268 Google Scholar |
Crossref |
Medline Inagaki, C., Tanaka, C. (1978). Characteristics of enzymic decarboxylation of L-threo-3,4-dihydroxyphenylserine using hog renal L-aromatic amino acid decarboxylase. Biochemical Pharmacology, 27(3), 1081–1086.
https://doi.org/10.1016/0006-2952(78)90161-2 Google Scholar |
Medline Isaias, I. U., Marotta, G., Pezzoli, G., Sabri, O., Schwarz, J., Crenna, P., Classen, J., Cavallari, P. (2011). Enhanced catecholamine transporter binding in the locus coeruleus of patients with early Parkinson disease. BMC Neurology, 11(88), 1471.
https://doi.org/10.1186/1471-2377-11-88 Google Scholar Jiang, Q., Ding, S., Wu, J., Liu, X., Wu, Z. (2014). Norepinephrine stimulates mobilization of endothelial progenitor cells after limb ischemia. PLoS One, 9(7), e101774.
https://doi.org/10.1371/journal.pone.0101774. eCollection 2014 Google Scholar |
Crossref |
Medline Jiao, K., Zeng, G., Niu, L. N., Yang, H. X., Ren, G. T., Xu, X. Y., Li, F. F., Tay, F. R., Wang, M. Q. (2016). Activation of alpha2A-adrenergic signal transduction in chondrocytes promotes degenerative r
留言 (0)