Sevoflurane-Induced miR-211-5p Promotes Neuronal Apoptosis by Inhibiting Efemp2

Backeljauw, B., Holland, S. K., Altaye, M., Loepke, A. W. (2015). Cognition and brain structure following early childhood surgery with anesthesia. Pediatrics, 136(1), e1–e12. https://doi.org/10.1542/peds.2014-3526
Google Scholar | Crossref | Medline | ISI Becker, W. R., Ober-Reynolds, B., Jouravleva, K., Jolly, S. M., Zamore, P. D., Greenleaf, W. J. (2019). High-throughput analysis reveals rules for target RNA binding and cleavage by AGO2. Molecular Cell, 75(4), 741–755. e11. https://doi.org/10.1016/j.molcel.2019.06.012
Google Scholar | Crossref | Medline Brioni, J. D., Varughese, S., Ahmed, R., Bein, B. (2017). A clinical review of inhalation anesthesia with sevoflurane: From early research to emerging topics. Journal of Anesthesia, 31(5), 764–778. https://doi.org/10.1007/s00540-017-2375-6
Google Scholar | Crossref | Medline Chen, G., Gong, M., Yan, M., Zhang, X. (2013). Sevoflurane induces endoplasmic reticulum stress mediated apoptosis in hippocampal neurons of aging rats. PLoS One, 8(2), e57870. https://doi.org/10.1371/journal.pone.0057870
Google Scholar | Crossref | Medline Cregan, S. P., Dawson, V. L., Slack, R. S. (2004). Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene, 23(16), 2785. https://doi.org/10.1038/sj.onc.1207517
Google Scholar | Crossref | Medline Cunha-Oliveira, T., Rego, A. C., Cardoso, S. M., Borges, F., Swerdlow, R. H., Macedo, T. (2006). Mitochondrial dysfunction and caspase activation in rat cortical neurons treated with cocaine or amphetamine. Brain Research, 1089(1), 44–54. https://doi.org/10.1016/j.brainres.2006.03.061
Google Scholar | Crossref | Medline Fan, C., Wu, Q., Ye, X., Luo, H., Yan, D., Xiong, Y. (2016). Role of miR-211 in neuronal differentiation and viability: Implications to pathogenesis of Alzheimer’s disease. Frontiers in Aging Neuroscience, 8, 166.
Google Scholar | Crossref | Medline Fujimoto, S., Ishikawa, M., Nagano, M., Sakamoto, A. (2015). Influence of neonatal sevoflurane exposure on nerve development-related microRNAs and behavior of rats. Biomedical Research, 36(6), 347–355. https://doi.org/10.2220/biomedres.36.347
Google Scholar | Crossref Hanada, K., Vermeij, M., Garinis, G. A., De Waard, M. C., Kunen, M. G., Myers, L. (2007). Perturbations of vascular homeostasis and aortic valve abnormalities in fibulin-4 deficient mice. Circulation Research, 100(5), 738–746. https://doi.org/10.1161/01.RES.0000260181.19449.95
Google Scholar | Crossref | Medline Hayase, T., Tachibana, S., Yamakage, M. (2016). Effect of sevoflurane anesthesia on the comprehensive mRNA expression profile of the mouse hippocampus. Medical Gas Research, 6(2), 70. https://doi.org/10.4103/2045-9912.184715
Google Scholar | Crossref | Medline Henshall, D. C. (2014). MicroRNA and epilepsy: Profiling, functions and potential clinical applications. Current Opinion in Neurology, 27(2), 199. https://doi.org/10.1097/WCO.0000000000000079
Google Scholar | Crossref | Medline Jiang, J., Lv, X., Wu, X., Yang, Y., Jiang, H. (2017). Downregulation of circulating insulin-like growth factor 1 contributes to memory impairment in aged mice after sevoflurane anesthesia. Behavioural Pharmacology, 28(2), 238–243. https://doi.org/10.1097/FBP.0000000000000293
Google Scholar | Crossref | Medline Jimenez-Mateos, E., Henshall, D. (2013). Epilepsy and microRNA. Neuroscience, 238, 218–229. https://doi.org/10.1016/j.neuroscience.2013.02.027
Google Scholar | Crossref | Medline Krol, J., Busskamp, V., Markiewicz, I., Stadler, M. B., Ribi, S., Richter, J. (2010). Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell, 141(4), 618–631. https://doi.org/10.1016/j.cell.2010.03.039
Google Scholar | Crossref | Medline | ISI Levy, C., Khaled, M., Iliopoulos, D., Janas, M. M., Schubert, S., Pinner, S. (2010). Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Molecular Cell, 40(5), 841–849. https://doi.org/10.1016/j.molcel.2010.11.020
Google Scholar | Crossref | Medline Liu, H., Luo, J. (2019). miR-211-5p contributes to chondrocyte differentiation by suppressing fibulin-4 expression to play a role in osteoarthritis. The Journal of Biochemistry, 166(6), 495–502. https://doi.org/10.1093/jb/mvz065
Google Scholar | Crossref | Medline Liu, Y., Pan, N., Ma, Y., Zhang, S., Guo, W., Li, H. 2013a). Inhaled sevoflurane may promote progression of amnestic mild cognitive impairment: A prospective, randomized parallel-group study. The American Journal of the Medical Sciences, 345(5), 355–360. https://doi.org/10.1097/MAJ.0b013e31825a674d
Google Scholar | Crossref | Medline Liu, S., Paule, M. G., Zhang, X., Newport, G. D., Apana, S. M., Berridge, M. S. 2013b). The evaluation of sevoflurane-induced apoptotic neurodegeneration with microPET using [18F]-DFNSH in the developing rat brain. Journal of Drug and Alcohol Research, 2(7).
Google Scholar Liu, D.-Z., Tian, Y., Ander, B. P., Xu, H., Stamova, B. S., Zhan, X. (2010). Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. Journal of Cerebral Blood Flow & Metabolism, 30(1), 92–101. https://doi.org/10.1038/jcbfm.2009.186
Google Scholar | SAGE Journals | ISI McLaughlin, P. J., Chen, Q., Horiguchi, M., Starcher, B. C., Stanton, J. B., Broekelmann, T. J. (2006). Targeted disruption of fibulin-4 abolishes elastogenesis and causes perinatal lethality in mice. Molecular and Cellular Biology, 26(5), 1700–1709. https://doi.org/10.1128/MCB.26.5.1700-1709.2006
Google Scholar | Crossref | Medline Min, S.-J., Hyun, H.-W., Kang, T.-C. (2017). Leptomycin B attenuates neuronal death via PKA- and PP2B-mediated ERK1/2 activation in the rat hippocampus following status epilepticus. Brain Research, 1670, 14–23. https://doi.org/10.1016/j.brainres.2017.06.002
Google Scholar | Crossref | Medline Nassogne, M. C., Evrard, P., Courtoy, P. J. (1998). Selective direct toxicity of cocaine on fetal mouse neurons: Teratogenic implications of neurite and apoptotic neuronal loss. Annals of the New York Academy of Sciences, 846(1), 51–68. https://doi.org/10.1111/j.1749-6632.1998.tb09726.x
Google Scholar | Crossref Pan, Z., Lu, X.-F., Shao, C., Zhang, C., Yang, J., Ma, T. (2011). The effects of sevoflurane anesthesia on rat hippocampus: A genomic expression analysis. Brain Research, 1381, 124–133. https://doi.org/10.1016/j.brainres.2011.01.020
Google Scholar | Crossref | Medline Ponomarev, E. D., Veremeyko, T., Weiner, H. L. (2013). MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia, 61(1), 91–103. https://doi.org/10.1002/glia.22363
Google Scholar | Crossref | Medline Qiao, Y., Feng, H., Zhao, T., Yan, H., Zhang, H., Zhao, X. (2015). Postoperative cognitive dysfunction after inhalational anesthesia in elderly patients undergoing major surgery: The influence of anesthetic technique, cerebral injury and systemic inflammation. BMC Anesthesiology, 15(1), 154. https://doi.org/10.1186/s12871-015-0130-9
Google Scholar | Crossref | Medline Qiu, J., Shi, P., Mao, W., Zhao, Y., Liu, W., Wang, Y. (2015). Effect of apoptosis in neural stem cells treated with sevoflurane. BMC Anesthesiology, 15(1), 25. https://doi.org/10.1186/s12871-015-0018-8
Google Scholar | Crossref | Medline Ramesh, S., Qi, X. J., Wildey, G. M., Robinson, J., Molkentin, J., Letterio, J. (2008). TGFβ-mediated BIM expression and apoptosis are regulated through SMAD3-dependent expression of the MAPK phosphatase MKP2. EMBO Reports, 9(10), 990–997. https://doi.org/10.1038/embor.2008.158
Google Scholar | Crossref | Medline Redell, J. B., Liu, Y., Dash, P. K. (2009). Traumatic brain injury alters expression of hippocampal microRNAs: Potential regulators of multiple pathophysiological processes. Journal of Neuroscience Research, 87(6), 1435–1448. https://doi.org/10.1002/jnr.21945
Google Scholar | Crossref | Medline Renard, M., Holm, T., Veith, R., Callewaert, B. L., Adès, L. C., Baspinar, O. (2010). Altered TGFβ signaling and cardiovascular manifestations in patients with autosomal recessive cutis laxa type I caused by fibulin-4 deficiency. European Journal of Human Genetics, 18(8), 895. https://doi.org/10.1038/ejhg.2010.45
Google Scholar | Crossref | Medline Sabirzhanov, B., Stoica, B. A., Hanscom, M., Piao, C. S., Faden, A. I. (2012). Over-expression of HSP70 attenuates caspase-dependent and caspase-independent pathways and inhibits neuronal apoptosis. Journal of Neurochemistry, 123(4), 542–554. https://doi.org/10.1111/j.1471-4159.2012.07927.x
Google Scholar | Crossref | Medline Sabirzhanov, B., Zhao, Z., Stoica, B. A., Loane, D. J., Wu, J., Borroto, C. (2014). Downregulation of miR-23a and miR-27a following experimental traumatic brain injury induces neuronal cell death through activation of proapoptotic Bcl-2 proteins. Journal of Neuroscience, 34(30), 10055–10071. https://doi.org/10.1523/JNEUROSCI.1260-14.2014
Google Scholar | Crossref | Medline Satomoto, M., Satoh, Y., Terui, K., Miyao, H., Takishima, K., Ito, M. (2009). Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology: The Journal of the American Society of Anesthesiologists, 110(3), 628–637.
Google Scholar | Medline Siman, R., McIntosh, T. K., Soltesz, K. M., Chen, Z., Neumar, R. W., Roberts, V. L. (2004). Proteins released from degenerating neurons are surrogate markers for acute brain damage. Neurobiology of Disease, 16(2), 311–320. https://doi.org/10.1016/j.nbd.2004.03.016
Google Scholar | Crossref | Medline Sun, L. (2010). Early childhood general anaesthesia exposure and neurocognitive development. British Journal of Anaesthesia, 105(suppl_1), i61–ii8. https://doi.org/10.1093/bja/aeq302
Google Scholar | Crossref | Medline | ISI Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397(6718), 441. https://doi.org/10.1038/17135
Google Scholar | Crossref | Medline | ISI Takaenoki, Y., Satoh, Y., Araki, Y., Kodama, M., Yonamine, R., Yufune, S. (2014). Neonatal exposure to sevoflurane in mice causes deficits in maternal behavior later in adulthood. Anesthesiology: The Journal of the American Society of Anesthesiologists, 120(2), 403–415.
Google Scholar | Crossref | Medline Tao, G., Zhang, J., Zhang, L., Dong, Y., Yu, B., Crosby, G. (2014). Sevoflurane induces tau phosphorylation and glycogen synthase kinase 3β activation in young mice. Anesthesiology: The Journal of the American Society of Anesthesiologists, 121(3), 510–527.
Google Scholar | Crossref | Medline Thi, H. T. H., Lim, H.-S., Kim, J., Kim, Y.-M., Kim, H.-Y., Hong, S. (2013). Transcriptional and post-translational regulation of Bim is essential for TGF-β and TNF-α-induced apoptosis of gastric cancer cell. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(6), 3584–3592. https://doi.org/10.1016/j.bbagen.2013.03.006
Google Scholar | Crossref | Medline Urban, Z., Davis, E. C. (2014). Cutis laxa: Intersection of elastic fiber biogenesis, TGFβ signaling, the secretory pathway and metabolism. Matrix Biology, 33, 16–22. https://doi.org/10.1016/j.matbio.2013.07.006
Google Scholar | Crossref | Medline Vutskits, L., Xie, Z. (2016). Lasting impact of general anaesthesia on the brain: Mechanisms and relevance. Nature Reviews Neuroscience, 17(11), 705. https://doi.org/10.1038/nrn.2016.128
Google Scholar | Crossref | Medline Wang, L., Chen, Q., Chen, Z., Tian, D., Xu, H., Cai, Q. (2015). EFEMP2 is upregulated in gliomas and promotes glioma cell proliferation and invasion. International Journal of Clinical and Experimental Pathology, 8(9), 10385.
Google Scholar | Medline Yakovlev, A. G., Di Giovanni, S., Wang, G., Liu, W., Stoica, B., Faden, A. I. (2004). BOK and NOXA are essential mediators of p53-dependent apoptosis. Journal of Biological Chemistry, 279(27), 28367–28374. https://doi.org/10.1074/jbc.M313526200
Google Scholar | Crossref | Medline Yang, Q., Yang, Z.-F., Liu, S.-B., Zhang, X.-N., Hou, Y., Li, X.-Q. (2010). Neuroprotective effects of hydroxysafflor yellow A against excitotoxic neuronal death partially through down-regulation of NR2B-containing NMDA receptors. Neurochemical Research, 35(9), 1353–1360. https://doi.org/10.1007/s11064-010-0191-6
Google Scholar | Crossref | Medline Ye, X., Shen, T., Hu, J., Zhang, L., Zhang, Y., Bao, L. (2017). Purinergic 2X7 receptor/NLRP3 pathway triggers neuronal apoptosis after ischemic stroke in the mouse. Experimental Neurology, 292, 46–55. https://doi.org/10.1016/j.expneurol.2017.03.002

留言 (0)

沒有登入
gif