1.
Riordan, JR, Rommens, JM, Kerem, B-S, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245:1066-1073.
Google Scholar |
Crossref |
Medline |
ISI2.
Norris, AW, Ode, KL, Merjaneh, L, et al. Survival in a bad neighborhood: pancreatic islets in cystic fibrosis. J Endocrinol. 2019;241:R35-R50.
Google Scholar |
Crossref3.
Kelsey, R, Manderson Koivula, FN, McClenaghan, NH, Kelly, C. Cystic fibrosis–related diabetes: pathophysiology and therapeutic challenges. Clin Med Insights Endocrinol Diabetes. 2019;12:1179551419851770.
Google Scholar |
SAGE Journals |
ISI4.
Zvereff, VV, Faruki, H, Edwards, M, Friedman, KJ. Cystic fibrosis carrier screening in a North American population. Genet Med. 2014;16:539-546.
Google Scholar |
Crossref |
Medline5.
Taylor-Robinson, D, Archangelidi, O, Carr, SB, et al. Data resource profile: the UK cystic fibrosis registry. Int J Epidemiol. 2018;47:9-10e.
Google Scholar |
Crossref |
Medline6.
Baker, SS, Borowitz, D, Baker, RD. Pancreatic exocrine function in patients with cystic fibrosis. Curr Gastroenterol Rep. 2005;7:227-233.
Google Scholar |
Crossref |
Medline7.
Kalnins, D, Durie, PR, Pencharz, P. Nutritional management of cystic fibrosis patients. Curr Opin Clin Nutr Metab Care. 2007;10:348-354.
Google Scholar |
Crossref |
Medline |
ISI8.
Wilschanski, M, Durie, PR. Pathology of pancreatic and intestinal disorders in cystic fibrosis. J R Soc Med. 1998;91:40-49.
Google Scholar |
SAGE Journals |
ISI9.
Moran, A, Dunitz, J, Nathan, B, Saeed, A, Holme, B, Thomas, W. Cystic fibrosis–related diabetes: current trends in prevalence, incidence, and mortality. Diabetes Care. 2009;32:1626-1631.
Google Scholar |
Crossref |
Medline |
ISI10.
Olesen, HV, Drevinek, P, Gulmans, VA, et al. Cystic fibrosis related diabetes in Europe: prevalence, risk factors and outcome; Olesen et al. J Cyst Fibros. 2020;19:321-327.
Google Scholar |
Crossref |
Medline11.
Mohan, K, Miller, H, Burhan, H, Ledson, MJ, Walshaw, MJ. Management of cystic fibrosis related diabetes: a survey of UK cystic fibrosis centers. Pediatr Pulmonol. 2008;43:642-647.
Google Scholar |
Crossref |
Medline |
ISI12.
Megías, MC, Albarrán, OG, Vasco, PG, Ferreiro, AL, Carro, LM. Insulin resistance, β-cell dysfunction and differences in curves of plasma glucose and insulin in the intermediate points of the standard glucose tolerance test in adults with cystic fibrosis. Endocrinol Nutr. 2015;62:91-99.
Google Scholar |
Medline13.
Nathan, BM, Laguna, T, Moran, A. Recent trends in cystic fibrosis-related diabetes. Curr Opin Endocrinol Diabetes Obes. 2010;17:335-341.
Google Scholar |
Crossref |
Medline |
ISI14.
Street, ME, Spaggiari, C, Ziveri, M, et al. Insulin production and resistance in cystic fibrosis: effect of age, disease activity, and genotype. J Endocrinol Invest. 2012;35:246-253.
Google Scholar |
Medline15.
Iannucci, A, Mukai, K, Johnson, D, Burke, B. Endocrine pancreas in cystic fibrosis: an immunohistochemical study. Hum Pathol. 1984;15:278-284.
Google Scholar |
Crossref |
Medline16.
Löhr, M, Goertchen, P, Nizze, H, et al. Cystic fibrosis associated islet changes may provide a basis for diabetes. Virchows Arch. 1989;414:179-185.
Google Scholar |
Crossref17.
Rotti, PG, Xie, W, Poudel, A, et al. Pancreatic and islet remodeling in cystic fibrosis transmembrane conductance regulator (CFTR) knockout ferrets. Am J Pathol. 2018;188:876-890.
Google Scholar |
Crossref |
Medline18.
Bogdani, M, Blackman, SM, Ridaura, C, Bellocq, J-P, Powers, AC, Aguilar-Bryan, L. Structural abnormalities in islets from very young children with cystic fibrosis may contribute to cystic fibrosis-related diabetes. Sci Rep. 2017;7:17231.
Google Scholar |
Crossref |
Medline19.
Olivier, AK, Yi, Y, Sun, X, et al. Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets. J Clin Invest. 2012;122:3755-3768.
Google Scholar |
Crossref |
Medline |
ISI20.
Sun, X, Olivier, AK, Yi, Y, et al. Gastrointestinal pathology in juvenile and adult CFTR-knockout ferrets. Am J Pathol. 2014;184:1309-1322.
Google Scholar |
Crossref |
Medline |
ISI21.
Sun, X, Yi, Y, Xie, W, et al. CFTR influences beta cell function and insulin secretion through non-cell autonomous exocrine-derived factors. Endocrinology. 2017;158:3325-3338.
Google Scholar |
Crossref |
Medline22.
Yi, Y, Sun, X, Gibson-Corley, K, et al. A transient metabolic recovery from early life glucose intolerance in cystic fibrosis ferrets occurs during pancreatic remodeling. Endocrinology. 2016;157:1852-1865.
Google Scholar |
Crossref |
Medline23.
Bishr Omary, M, Lugea, A, Lowe, A, Pandol, S. The pancreatic stellate cell: a star on the rise in pancreatic disease. J Clin Invest. 2007;117:50-59.
Google Scholar |
Crossref |
Medline24.
Plikus, MV, Guerrero-Juarez, CF, Ito, M, et al. Regeneration of fat cells from myofibroblasts during wound healing. Science. 2017;355:748-752.
Google Scholar |
Crossref |
Medline25.
Means, AL. Pancreatic stellate cells: small cells with a big role in tissue homeostasis. Lab Invest. 2013;93:4-7.
Google Scholar |
Crossref |
Medline26.
Phillips, P. Pancreatic stellate cells and fibrosis. In: Grippo, PJ, Munshi, HG, eds. Pancreatic Cancer and Tumor Microenvironment. Transworld Research Network; 2012.
Google Scholar27.
Khan, D, Kelsey, R, Maheshwari, RR, et al. Short-term cftR inhibition reduces islet area in C57BL/6 mice. Sci Rep. 2019;9:11244.
Google Scholar |
Crossref |
Medline28.
Edlund, A, Barghouth, M, Hühn, M, et al. Defective exocytosis and processing of insulin in a cystic fibrosis mouse model. J Endocrinol. 2019;241:45-57.
Google Scholar |
Crossref29.
Couce, M, O’Brien, TD, Moran, A, Roche, PC, Butler, PC. Diabetes mellitus in cystic fibrosis is characterized by islet amyloidosis. J Clin Endocrinol Metab. 1996;81:1267-1272.
Google Scholar |
Medline |
ISI30.
Cory, M, Moin, ASM, Moran, A, et al. An increase in chromogranin A-positive, hormone-negative endocrine cells in pancreas in cystic fibrosis. J Endocr Soc. 2018;2:1058-1066.
Google Scholar |
Crossref |
Medline31.
Abdul-Karim, FW, Dahms, BB, Velasco, ME, Rodman, HM. Islets of Langerhans in adolescents and adults with cystic fibrosis: a quantitative study. Arch Pathol Lab Med. 1986;110:602-606.
Google Scholar |
Medline |
ISI32.
Soejima, K, Landing, BH. Pancreatic islets in older patients with cystic fibrosis with and without diabetes mellitus: morphometric and immunocytologic studies. Pediatr Pathol. 1986;6:25-46.
Google Scholar |
Crossref |
Medline33.
Hull, RL, Gibson, RL, McNamara, S, et al. Islet interleukin-1β immunoreactivity is an early feature of cystic fibrosis that may contribute to β-cell failure. Diabetes Care. 2018;41:823-830.
Google Scholar |
Crossref |
Medline34.
Uc, A, Olivier, AK, Griffin, MA, et al. Glycaemic regulation and insulin secretion are abnormal in cystic fibrosis pigs despite sparing of islet cell mass. Clin Sci. 2015;128:131-142.
Google Scholar |
Crossref35.
Jurgens, CA, Toukatly, MN, Fligner, CL, et al. β-cell loss and β-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol. 2011;178:2632-2640.
Google Scholar |
Crossref |
Medline |
ISI36.
Bonner-Weir, S, Inada, A, Yatoh, S, et al. Transdifferentiation of pancreatic ductal cells to endocrine beta-cells. Biochem Soc Trans. 2008;36:353-356.
Google Scholar |
Crossref |
Medline |
ISI37.
Wang, RN, Klöppel, G, Bouwens, L. Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia. 1995;38:1405-1411.
Google Scholar |
Crossref |
Medline |
ISI38.
Sheikh, S, Gudipaty, L, De Leon, DD, et al. Reduced β-cell secretory capacity in pancreatic-insufficient, but not pancreatic-sufficient, cystic fibrosis despite normal glucose tolerance. Diabetes. 2017;66:134-144.
Google Scholar |
Crossref |
Medline39.
Hart, NJ, Aramandla, R, Poffenberger, G, et al. Cystic fibrosis–related diabetes is caused by islet loss and inflammation. JCI Insight. 2018;3:e98240.
Google Scholar |
Crossref40.
Quinton, PM. Chloride impermeability in cystic fibrosis. Nature. 1983;301:421-422.
Google Scholar |
Crossref |
Medline |
ISI41.
Kopelman, H, Corey, M, Gaskin, K, Durie, P, Weizman, Z, Forstner, G. Impaired chloride secretion, as well as bicarbonate secretion, underlies the fluid secretory defect in the cystic fibrosis pancreas. Gastroenterology. 1988;95:349-355.
Google Scholar |
Crossref |
Medline |
ISI42.
Kopelman, H, Durie, P, Gaskin, K, Weizman, Z, Forstner, G. Pancreatic fluid secretion and protein hyperconcentration in cystic fibrosis. N Engl J Med. 1985;312:329-334.
Google Scholar |
Crossref |
Medline |
ISI43.
Wilschanski, M, Novak, I. The cystic fibrosis of exocrine pancreas. Cold Spring Harb Perspect Med. 2013;3:a009746.
Google Scholar |
Crossref |
Medline44.
Hegyi, P, Wilschanski, M, Muallem, S, et al. CFTR: a new horizon in the pathomechanism and treatment of pancreatitis. Rev Physiol Biochem Pharmacol. 2016;170:37-66.
Google Scholar |
Crossref |
Medline45.
Gibson-Corley, KN, Meyerholz, DK, Engelhardt, JF. Pancreatic pathophysiology in cystic fibrosis. J Pathol. 2016;238:311-320.
Google Scholar |
Crossref |
Medline46.
Lindkvist, B. Diagnosis and treatment of pancreatic exocrine insufficiency. World J Gastroenterol. 2013;19:7258-7266.
Google Scholar |
Crossref |
Medline47.
Koivula, FNM, McClenaghan, NH, Harper, AG, Kelly, C. Islet-intrinsic effects of CFTR mutation. Diabetologia. 2016;59:1350-1355.
Google Scholar |
Crossref |
Medline48.
White, MG, Maheshwari, RR, Anderson, SJ, et al. In situ analysis reveals that CFTR is expressed in only a small minority of β-cells in normal adult human pancreas. J Clin Endocrinol Metab. 2020;105:1366-1374.
Google Scholar |
Crossref49.
Di Fulvio, M, Bogdani, M, Velasco, M, et al. Heterogeneous expression of CFTR in insulin-secreting β-cells of the normal human islet. PloS One. 2020;15:e0242749.
Google Scholar |
Crossref |
Medline50.
Edlund, A, Esguerra, JL, Wendt, A, Flodström-Tullberg, M, Eliasson, L. CFTR and Anoctamin 1 (ANO1) contribute to cAMP amplified exocytosis and insulin secretion in human and murine pancreatic beta-cells. BMC Med. 2014;12:87.
Google Scholar |
Crossref |
Medline
留言 (0)