Proceedings of the 2021 National Toxicology Program Satellite Symposium

1. Bentley, RT, Ahmed, AU, Yanke, AB, Cohen-Gadol, AA, Dey, M. Dogs are man’s best friend: in sickness and in health. Neuro Oncol. 2017;19(3):312–322.
Google Scholar | Medline2. Koestner, ABT, Fatzer, R, Schulman, FY, Summers, BA, Van Winkle, TJ. Histological Classification of Tumors of the Nervous System of Domestic Animals. Armed Forces Institute of Pathology; 1999.
Google Scholar3. Miller, AD, Miller, CR, Rossmeisl, JH. Canine primary intracranial cancer: a clinicopathologic and comparative review of glioma, meningioma, and choroid plexus tumors. Front Oncol. 2019;9:1151.
Google Scholar | Crossref | Medline4. Truve, K, Dickinson, P, Xiong, A, et al. Utilizing the dog genome in the search for novel candidate genes involved in glioma development-genome wide association mapping followed by targeted massive parallel sequencing identifies a strongly associated locus. PLoS Genet. 2016;12(5):e1006000.
Google Scholar | Crossref | Medline5. Koehler, JW, Miller, AD, Miller, CR, et al. A revised diagnostic classification of canine glioma: towards validation of the canine glioma patient as a naturally occurring preclinical model for human glioma. J Neuropathol Exp Neurol. 2018;77(11):1039–1054.
Google Scholar | Crossref | Medline6. LeBlanc, AK, Mazcko, C, Brown, DE, et al. Creation of an NCI comparative brain tumor consortium: informing the translation of new knowledge from canine to human brain tumor patients. Neuro Oncol. 2016;18(9):1209–1218.
Google Scholar | Crossref | Medline7. Johnson, GC, Coates, JR, Wininger, F. Diagnostic immunohistochemistry of canine and feline intracalvarial tumors in the age of brain biopsies. Vet Pathol. 2014;51(1):146–160.
Google Scholar | SAGE Journals | ISI8. Lyck, L, Dalmau, I, Chemnitz, J, Finsen, B, Schroder, HD. Immunohistochemical markers for quantitative studies of neurons and glia in human neocortex. J Histochem Cytochem. 2008;56(3):201–221.
Google Scholar | SAGE Journals9. Radtke, C, Sasaki, M, Lankford, KL, Gallo, V, Kocsis, JD. CNPase expression in olfactory ensheathing cells. J Biomed Biotechnol. 2011;2011:608496.
Google Scholar | Crossref | Medline10. Scholzen, T, Gerdes, J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182(3):311–322.
Google Scholar | Crossref | Medline | ISI11. Nielsen, LAG, Bangso, JA, Lindahl, KH, et al. Evaluation of the proliferation marker Ki-67 in gliomas: Interobserver variability and digital quantification. Diagn Pathol. 2018;13(1):38.
Google Scholar | Crossref | Medline12. Coons, SW, Johnson, PC, Pearl, DK. The prognostic significance of Ki-67 labeling indices for oligodendrogliomas. Neurosurgery. 1997;41(4):878–884; discussion 884-875.
Google Scholar | Crossref | Medline | ISI13. Johannessen, AL, Torp, SH. The clinical value of Ki-67/MIB-1 labeling index in human astrocytomas. Pathol Oncol Res. 2006;12(3):143–147.
Google Scholar | Crossref | Medline14. Torp, SH . Diagnostic and prognostic role of Ki67 immunostaining in human astrocytomas using four different antibodies. Clin Neuropathol. 2002;21(6):252–257.
Google Scholar | Medline15. Funkhouser, WK, Hayes, DN, Moore, DT, et al. Interpathologist diagnostic agreement for non-small cell lung carcinomas using current and recent classifications. Arch Pathol Lab Med. 2018;142(12):1537–1548.
Google Scholar | Crossref | Medline16. Landis, JR, Koch, GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–174.
Google Scholar | Crossref | Medline | ISI17. van den Bent, MJ . Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician’s perspective. Acta Neuropathol. 2010;120(3):297–304.
Google Scholar | Crossref | Medline18. Bruner, JM, Inouye, L, Fuller, GN, Langford, LA. Diagnostic discrepancies and their clinical impact in a neuropathology referral practice. Cancer. 1997;79(4):796–803.
Google Scholar | Crossref | Medline19. Krane, G . Comparative diagnostics and immunopathology of canine glioma. 2021. Accessed August 30, 2021. https://repository.lib.ncsu.edu/handle/1840.20/38561
Google Scholar20. Nakazawa, T, Kasahara, K, Ikezaki, S, et al. Renal tubular cyst formation in newborn rats treated with p-cumylphenol. J Toxicol Pathol. 2009;22(2):125–131.
Google Scholar | Crossref | Medline21. Baba, M, Furihata, M, Hong, SB, et al. Kidney-targeted Birt-Hogg-Dube gene inactivation in a mouse model: Erk1/2 and Akt-mTOR activation, cell hyperproliferation, and polycystic kidneys. J Natl Cancer Inst. 2008;100(2):140–154.
Google Scholar | Crossref | Medline22. Frazier, KS, Seely, JC, Hard, GC, et al. Proliferative and nonproliferative lesions of the rat and mouse urinary system. Toxicol Pathol. 2012;40(4 suppl):14S–86S.
Google Scholar | SAGE Journals | ISI23. Brown, DL, Walling, BE, Mattix, ME. Atlas of Histology of the Juvenile Rat. Elsevier; 2016.
Google Scholar24. Hasegawa, R, Hirata-Koizumi, M, Takahashi, M, Kamata, E, Ema, M. Comparative susceptibility of newborn and young rats to six industrial chemicals. Congenit Anom (Kyoto). 2005;45(4):137–145.
Google Scholar | Crossref | Medline25. Cesta, MF, Hard, GC, Boyce, JT, Ryan, MJ, Chan, PC, Sills, RC. Complex histopathologic response in rat kidney to oral beta-myrcene: an unusual dose-related nephrosis and low-dose alpha2u-globulin nephropathy. Toxicol Pathol. 2013;41(8):1068–1077.
Google Scholar | SAGE Journals | ISI26. Katsuyama, M, Masuyama, T, Komura, I, Hibino, T, Takahashi, H. Characterization of a novel polycystic kidney rat model with accompanying polycystic liver. Exp Anim. 2000;49(1):51–55.
Google Scholar | Crossref | Medline27. Wilson, PD . Mouse models of polycystic kidney disease. Curr Top Dev Biol. 2008;84:311–350.
Google Scholar | Crossref | Medline | ISI28. Bergmann, C, Guay-Woodford, LM, Harris, PC, Horie, S, Peters, DJM, Torres, VE. Polycystic kidney disease. Nat Rev Dis Primers. 2018;4(1):50.
Google Scholar | Crossref | Medline29. Cantile, C, Youssef, S. Nervous system. In: Grant, MM , ed. Jubb, Kennedy and Palmer’s Pathology of Domestic Animals. 6th edition. Vol 1. Elsevier; 2016:251–406.
Google Scholar | Crossref30. Kadam, SD, Dudek, FE. Neuropathogical features of a rat model for perinatal hypoxic-ischemic encephalopathy with associated epilepsy. J Comp Neurol. 2007;505(6):716–737.
Google Scholar | Crossref | Medline31. Ferrer, I . Experimentally induced cortical malformations in rats. Childs Nerv Syst. 1993;9(7):403–407.
Google Scholar | Crossref | Medline32. Kaufmann, W, Bolon, B, Bradley, A, et al. Proliferative and nonproliferative lesions of the rat and mouse central and peripheral nervous systems. Toxicol Pathol. 2012;40(4 suppl):87S–157S.
Google Scholar | SAGE Journals | ISI33. Weber, K, Garman, RH, Germann, PG, et al. Classification of neural tumors in laboratory rodents, emphasizing the rat. Toxicol Pathol. 2011;39(1):129–151.
Google Scholar | SAGE Journals | ISI34. Solleveld, HA, Boorman, GA. Brain. Academic Press; 1990.
Google Scholar35. Little, P, Rao, DB. Brain—Mineralization. National Toxicology Program Nonneoplastic Lesion Atlas. 2014. Updated January 2, 2014. Accessed June 30, 2021. http://ntp.niehs.nih.gov/nnl/nervous/brain/mineral/index.htm
Google Scholar36. Taylor, I . Background Lesions in Laboratory Animals. Elsevier; 2012.
Google Scholar | Crossref37. Bertrand, L, Mukaratirwa, S, Bradley, A. Incidence of spontaneous central nervous system tumors in CD-1 mice and Sprague-Dawley, Han-Wistar, and Wistar rats used in carcinogenicity studies. Toxicol Pathol. 2014;42(8):1168–1173.
Google Scholar | SAGE Journals | ISI38. Ward, JM, Rice, JM. Naturally occurring and chemically induced brain tumors of rats and mice in carcinogenesis bioassays. Ann N Y Acad Sci. 1982;381:304–319.
Google Scholar | Crossref | Medline | ISI39. Krinke, G, Suter, J, Hess, R. Radicular myelinopathy in aging rats. Vet Pathol. 1981;18(3):335–341.
Google Scholar | SAGE Journals | ISI40. Mufson, EJ, Stein, DG. Degeneration in the spinal cord of old rats. Exp Neurol. 1980;70(1):179–186.
Google Scholar | Crossref | Medline41. Bradley, A, Roulois, A, McKay, J, Parry, N, Boorman, G. The Spinal Cord and Peripheral Nervous System. 2nd ed. Elsevier; 2018.
Google Scholar | Crossref42. Krinke, GJ . Nonneoplastic and Neoplastic Changes in the Peripheral Nervous System. ILSI Press; 1996.
Google Scholar43. Kar, M, Chourasiya, Y, Maheshwari, R, Tekade, RK. Current Developments in Excipient Science: Implication of Quantitative Selection of Each Excipient in Product Development. Academic Press; 2019.
Google Scholar | Crossref44. Loftsson, T, Jarho, P, Masson, M, Jarvinen, T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv. 2005;2(2):335–351.
Google Scholar | Crossref | Medline45. Stella, VJ, He, Q. Cyclodextrins. Toxicol Pathol. 2008;36(1):30–42.
Google Scholar | SAGE Journals | ISI46. Rosseels, ML, Delaunois, AG, Hanon, E, Guillaume, PJ, Martin, FD, van den Dobbelsteen, DJ. Hydroxypropyl-beta-cyclodextrin impacts renal and systemic hemodynamics in the anesthetized dog. Regul Toxicol Pharmacol. 2013;67(3):351–359.
Google Scholar | Crossref | Medline47. Khan, KNM, Alden, CL. Kidney. 2nd ed. Academic Press; 2002.
Google Scholar48. Sargeant, A, Bruner, R, Thomas, H, Cialleal, J. Subcutaneous sarcomas related to chronic subcutaneous administration of 30% (w/v) aqueous sulfobutyl ether 7-β cyclodextrin (Captisol) in Winstar Han rats. In. Poster presented at: 2019 ACVP and ASVCP Annual Meeting, 2019.
Google Scholar49. Dixon, D, Alison, R, Bach, U, et al. Nonproliferative and proliferative lesions of the rat and mouse female reproductive system. J Toxicol Pathol. 2014;27(3-4 suppl):1S–107S.
Google Scholar | Crossref | Medline50. Dixon, D, Vidal, JD, Leininger, JR, Jokinen, MP. Oviduct, Uterus, and Vagina. Elsevier; 2018.
Google Scholar | Crossref51. Nagaoka, T, Takeuchi, M, Onodera, H, Matsushima, Y, Ando-Lu, J, Maekawa, A. Sequential observation of spontaneous endometrial adenocarcinoma development in Donryu rats. Toxicol Pathol. 1994;22(3):261–269.
Google Scholar | SAGE Journals | ISI52. Deerberg, F, Rehm, S, Pittermann, W. Uncommon frequency of adenocarcinomas of the uterus in virgin Han: Wistar rats. Vet Pathol. 1981;18(6):707–713.
Google Scholar | SAGE Journals | ISI53. Murali, R, Soslow, RA, Weigelt, B. Classification of endometrial carcinoma: more than two types. Lancet Oncol. 2014;15(7):e268–e278.
Google Scholar | Crossref | Medline | ISI54. Berger, G, Fetissof, F, Vitrey, D, Chayvialle, JA, Feroldi, J. Endometrial carcinoma of the intestinal type. A first case report. Appl Pathol. 1984;2(2):63–69.
Google Scholar | Medline55. Vyas, M, Wong, S, Zhang, X. Intestinal metaplasia of appendiceal endometriosis is not uncommon and may mimic appendiceal mucinous neoplasm. Pathol Res Pract. 2017;213(1):39–44.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif