Comparative Milestones in Rodent and Human Postnatal Central Nervous System Development

1. Dobbing, J, Sands, J. Comparative aspects of the brain growth spurt. Early Hum Dev. 1979;3(1):79–83.
Google Scholar | Crossref | Medline | ISI2. Watson, RE, Desesso, JM, Hurtt, ME, Cappon, GD. Postnatal growth and morphological development of the brain: a species comparison. Birth Defects Res B Dev Reprod Toxicol. 2006;77(5):471–484.
Google Scholar | Crossref | Medline | ISI3. Romijn, HJ, Hofman, MA, Gramsbergen, A. At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby?. Early Hum Dev. 1991;26(1):61–67.
Google Scholar | Crossref | Medline4. Semple, BD, Blomgren, K, Gimlin, K, Ferriero, DM, Noble-Haeusslein, LJ . Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106-107:1–16.
Google Scholar | Crossref | Medline | ISI5. Bayer, SA, Altman, J, Russo, RJ, Zhang, X. Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology. 1993;14(1):83–144.
Google Scholar | Medline | ISI6. Sanai, N, Nguyen, T, Ihrie, RA, et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature. 2011;478(7369):382–386.
Google Scholar | Crossref | Medline7. Huttenlocher, PR, Dabholkar, AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387(2):167–178.
Google Scholar | Crossref | Medline | ISI8. Andersen, SL . Trajectories of brain development: point of vulnerability or window of opportunity?. Neurosci Biobehav Rev. 2003;27(1-2):3–18.
Google Scholar | Crossref | Medline | ISI9. Lenroot, RK, Giedd, JN. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev. 2006;30(6):718–729.
Google Scholar | Crossref | Medline | ISI10. Sowell, ER, Thompson, PM, Tessner, KD, Toga, AW. Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. J Neurosci. 2001;21(22):8819–8829.
Google Scholar | Crossref | Medline | ISI11. Clancy, B, Finlay, BL, Darlington, RB, Anand, KJ. Extrapolating brain development from experimental species to humans. Neurotoxicology. 2007;28(5):931–937.
Google Scholar | Crossref | Medline12. Rice, D, Barone, S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108(suppl 3):511–533.
Google Scholar | Crossref | Medline | ISI13. Craig, A, Ling Luo, N, Beardsley, DJ, et al. Quantitative analysis of perinatal rodent oligodendrocyte lineage progression and its correlation with human. Exp Neurol. 2003;181(2):231–240.
Google Scholar | Crossref | Medline14. Baloch, S, Verma, R, Huang, H, et al. Quantification of brain maturation and growth patterns in C57BL/6 J mice via computational neuroanatomy of diffusion tensor images. Cereb Cortex. 2009;19(3):675–687.
Google Scholar | Crossref | Medline15. Popov, NA, Skulachev, VP. Neotenic traits in Heterocephalus glaber and homo sapiens. Biochemistry (Mosc). 2019;84(12):1484–1489.
Google Scholar | Crossref | Medline16. Guidi, S, Ciani, E, Severi, S, Contestabile, A, Bartesaghi, R. Postnatal neurogenesis in the dentate gyrus of the guinea pig. Hippocampus. 2005;15(3):285–301.
Google Scholar | Crossref | Medline17. Hatakeyama, J, Sato, H, Shimamura, K. Developing guinea pig brain as a model for cortical folding. Dev Growth Differ. 2017;59(4):286–301.
Google Scholar | Crossref | Medline18. Orr, ME, Garbarino, VR, Salinas, A, Buffenstein, R. Extended postnatal brain development in the longest-lived rodent: prolonged maintenance of neotenous traits in the naked mole-rat brain. Front Neurosci. 2016;10:504.
Google Scholar | Crossref | Medline19. Dobbing, J, Sands, J. Vulnerability of developing brain. IX. The effect of nutritional growth retardation on the timing of the brain growth-spurt. Biol Neonate. 1971;19(4):363–378.
Google Scholar | Crossref | Medline20. Caviness, VS, Kennedy, DN, Richelme, C, Rademacher, J, Filipek, PA. The human brain age 7-11 years: a volumetric analysis based on magnetic resonance images. Cereb Cortex. 1996;6(5):726–736.
Google Scholar | Crossref | Medline | ISI21. Blue, ME, Parnavelas, JG. The formation and maturation of synapses in the visual cortex of the rat. II. quantitative analysis. J Neurocytol. 1983;12(4):697–712.
Google Scholar | Crossref | Medline22. Huttenlocher, PR, de Courten, C. The development of synapses in striate cortex of man. Hum Neurobiol. 1987;6(1):1–9.
Google Scholar | Medline23. Blue, ME, Parnavelas, JG. The formation and maturation of synapses in the visual cortex of the rat. I. qualitative analysis. J Neurocytol. 1983;12(4):599–616.
Google Scholar | Crossref | Medline24. Cohen-Cory, S . The developing synapse: construction and modulation of synaptic structures and circuits. Science (New York, NY). 2002;298(5594):770–776.
Google Scholar | Crossref25. Verstraelen, P, Garcia-Diaz Barriga, G, Verschuuren, M, et al. Systematic quantification of synapses in primary neuronal culture. iScience. 2020;23(9):101542.
Google Scholar | Crossref | Medline26. Ippolito, DM, Eroglu, C. Quantifying synapses: an immunocytochemistry-based assay to quantify synapse number. J Vis Exp. 2010;45:2270.
Google Scholar27. Li, L, Tasic, B, Micheva, KD, et al. Visualizing the distribution of synapses from individual neurons in the mouse brain. PLoS One. 2010;5(7):e11503.
Google Scholar | Crossref | Medline28. Huttenlocher, PR . Synaptic density in human frontal cortex - developmental changes and effects of aging. Brain Res. 1979;163(2):195–205.
Google Scholar | Crossref | Medline | ISI29. Purves, D, Lichtman, JW. Elimination of synapses in the developing nervous system. Science (New York, NY). 1980;210(4466):153–157.
Google Scholar | Crossref30. Lewis, S . Development: pruning the dendritic tree. Nat Rev Neurosci. 2011;12(9):493.
Google Scholar | Crossref | Medline31. Tang, G, Gudsnuk, K, Kuo, SH, et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron. 2014;83(5):1131–1143.
Google Scholar | Crossref | Medline32. Germann, M, Brederoo, SG, Sommer, IEC. Abnormal synaptic pruning during adolescence underlying the development of psychotic disorders. Curr Opin Psychiatry. 2021;34(3):222–227.
Google Scholar | Crossref | Medline33. Paolicelli, RC, Bolasco, G, Pagani, F, et al. Synaptic pruning by microglia is necessary for normal brain development. Science (New York, NY). 2011;333(6048):1456–1458.
Google Scholar | Crossref34. Stevens, B, Allen, NJ, Vazquez, LE, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131(6):1164–1178.
Google Scholar | Crossref | Medline | ISI35. Zhan, Y, Paolicelli, RC, Sforazzini, F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci. 2014;17(3):400–406.
Google Scholar | Crossref | Medline36. Sakai, J . Core Concept: how synaptic pruning shapes neural wiring during development and, possibly, in disease. Proc Natl Acad Sci U S A. 2020;117(28):16096–16099.
Google Scholar | Crossref | Medline37. Jones, EG . Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annu Rev Neurosci. 2000;23:1–37.
Google Scholar | Crossref | Medline | ISI38. Zuo, Y, Yang, G, Kwon, E, Gan, WB. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature. 2005;436(7048):261–265.
Google Scholar | Crossref | Medline39. Schwartz, PH, Massarweh, WF, Vinters, HV, Wasterlain, CG. A rat model of severe neonatal hypoxic-ischemic brain injury. Stroke. 1992;23(4):539–546.
Google Scholar | Crossref | Medline40. Tang, W, Xin, X, O’Connor, M, et al. Transient sublethal hypoxia in neonatal rats causes reduced dendritic spines, aberrant synaptic plasticity, and impairments in memory. J Neurosci Res. 2020;98(8):1588–1604.
Google Scholar | Crossref | Medline41. Luján, R, Shigemoto, R, López-Bendito, G. Glutamate and GABA receptor signalling in the developing brain. Neuroscience. 2005;130(3):567–580.
Google Scholar | Crossref | Medline42. Andropoulos, DB . Effect of anesthesia on the developing brain: infant and fetus. Fetal Diagn Ther. 2018;43(1):1–11.
Google Scholar | Crossref | Medline43. Weir, CJ, Mitchell, SJ, Lambert, JJ. Role of GABAA receptor subtypes in the behavioural effects of intravenous general anaesthetics. Br J Anaesth. 2017;119(suppl_1):i167–i175.
Google Scholar | Crossref | Medline44. Ghasemi, M, Schachter, SC. The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav. 2011;22(4):617–640.
Google Scholar | Crossref | Medline45. Patel, P, Sun, L. Update on neonatal anesthetic neurotoxicity: insight into molecular mechanisms and relevance to humans. Anesthesiology. 2009;110(4):703–708.
Google Scholar | Crossref | Medline46. White, LD, Barone, S. Qualitative and quantitative estimates of apoptosis from birth to senescence in the rat brain. Cell Death Differ. 2001;8(4):345–356.
Google Scholar | Crossref | Medline47. Switzer, RC III . Application of silver degeneration stains for neurotoxicity testing. Toxicol Pathol. 2000;28(1):70–83.
Google Scholar | SAGE Journals | ISI48. Ikonomidou, C, Bosch, F, Miksa, M, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science (New York, NY). 1999;283(5398):70–74.
Google Scholar | Crossref49. Jevtovic-Todorovic, V, Hartman, RE, Izumi, Y, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23(3):876–882.
Google Scholar | Crossref | Medline | ISI50. Cabrera, OH, Gulvezan, T, Symmes, B, Quillinan, N, Jevtovic-Todorovic, V. Sex differences in neurodevelopmental abnormalities caused by early-life anaesthesia exposure: a narrative review. Br J Anaesth. 2020;124(3):e81–e91.

留言 (0)

沒有登入
gif