Phthalate Toxicity in Rats and Its Relation to Testicular Dysgenesis Syndrome in Humans

1. Skakkebaek, NE, Rajpert-De Meyts, E, Main, KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16(5):972-978.
Google Scholar | Crossref | Medline | ISI2. Skakkebaek, NE, Rajpert-De Meyts, E, Buck Louis, GM, et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev. 2016;96(1):55-97.
Google Scholar | Crossref | Medline3. Rodprasert, W, Virtanen, HE, Mäkelä, JA, Toppari, J. Hypogonadism and cryptorchidism. Front Endocrinol (Lausanne). 2020;10:906-906.
Google Scholar | Crossref | Medline4. van den Driesche, S, Kilcoyne, KR, Wagner, I, et al. Experimentally induced testicular dysgenesis syndrome originates in the masculinization programming window. JCI Insight. 2017;2(6):e91204.
Google Scholar | Crossref | Medline5. SEER (Surveillance E, and End Results: National Cancer Institute, USA) . Incidence and age-adjusted rates of testis cancer 1992-2018. 2021. Accessed June 28, 2021. https://seer.cancer.gov/statfacts/html/testis.html.
Google Scholar6. Carlsen, E, Giwercman, A, Keiding, N, Skakkebaek, NE. Evidence for decreasing quality of semen during past 50 years. BMJ. 1992;305(6854):609-613.
Google Scholar | Crossref | Medline7. Levine, H, Jorgensen, N, Martino-Andrade, A, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update. 2017;23(6):646-659.
Google Scholar | Crossref | Medline8. Swan, SH, Elkin, EP, Fenster, L. The question of declining sperm density revisited: an analysis of 101 studies published 1934-1996. Environ Health Perspect. 2000;108(10):961-966.
Google Scholar | Crossref | Medline | ISI9. Sharpe, RM . Sperm counts and fertility in men: a rocky road ahead. Science & society series on sex and science. EMBO Rep. 2012;13(5):398-403.
Google Scholar | Crossref | Medline10. Paulozzi, LJ . International trends in rates of hypospadias and cryptorchidism. Environ Health Perspect. 1999;107(4):297-302.
Google Scholar | Crossref | Medline11. Toppari, J, Kaleva, M, Virtanen, HE. Trends in the incidence of cryptorchidism and hypospadias, and methodological limitations of registry-based data. Hum Reprod Update. 2001;7(3):282-286.
Google Scholar | Crossref | Medline12. Hsieh, MH, Breyer, BN, Eisenberg, ML, Baskin, LS. Associations among hypospadias, cryptorchidism, anogenital distance, and endocrine disruption. Curr Urol Rep. 2008;9(2):137-142.
Google Scholar | Crossref | Medline13. Eisenberg, ML, Hsieh, MH, Walters, RC, Krasnow, R, Lipshultz, LI. The relationship between anogenital distance, fatherhood, and fertility in adult men. PLoS One. 2011;6(5):e18973.
Google Scholar | Crossref | Medline14. Mendiola, J, Stahlhut, RW, Jorgensen, N, Liu, F, Swan, SH. Shorter anogenital distance predicts poorer semen quality in young men in Rochester, New York. Environ Health Perspect. 2011;119(7):958-963.
Google Scholar | Crossref | Medline15. Welsh, M, Saunders, PT, Fisken, M, et al. Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. J Clin Invest. 2008;118(4):1479-1490.
Google Scholar | Crossref | Medline16. Fisher, JS, Macpherson, S, Marchetti, N, Sharpe, RM. Human ‘testicular dysgenesis syndrome’: a possible model using in-utero exposure of the rat to dibutyl phthalate. Hum Reprod. 2003;18(7):1383-1394.
Google Scholar | Crossref | Medline17. Lara, NLM, van den Driesche, S, Macpherson, S, Franca, LR, Sharpe, RM. Dibutyl phthalate induced testicular dysgenesis originates after seminiferous cord formation in rats. Sci Rep. 2017;7(1):2521.
Google Scholar | Crossref | Medline18. Sharpe, RM . The oestrogen hypothesis—where do we stand now? Int J Androl. 2003;26(1):2-15.
Google Scholar | Crossref | Medline19. Edwards, TM, Moore, BC, Guillette, LJ. Reproductive dysgenesis in wildlife: a comparative view. Int J Androl. 2006;29(1):109-121.
Google Scholar | Crossref | Medline20. Guillette, LJ, Pickford, DB, Crain, DA, Rooney, AA, Percival, HF. Reduction in penis size and plasma testosterone concentrations in juvenile alligators living in a contaminated environment. Gen Comp Endocrinol. 1996;101(1):32-42.
Google Scholar | Crossref | Medline21. Lea, RG, Byers, AS, Sumner, RN, et al. Environmental chemicals impact dog semen quality in vitro and may be associated with a temporal decline in sperm motility and increased cryptorchidism. Sci Rep. 2016;6:31281.
Google Scholar | Crossref | Medline22. Kavlock, R, Boekelheide, K, Chapin, R, et al. NTP Center for the evaluation of risks to human reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di-n-butyl phthalate. Reprod Toxicol. 2002;16(5):489-527.
Google Scholar | Crossref | Medline23. Foster, PM . Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int J Androl. 2006;29(1):140-147; discussion 181-145.
Google Scholar | Crossref | Medline24. Barlow, NJ, McIntyre, BS, Foster, PM. Male reproductive tract lesions at 6, 12, and 18 months of age following in utero exposure to di(n-butyl) phthalate. Toxicol Pathol. 2004;32(1):79-90.
Google Scholar | SAGE Journals | ISI25. Gray, LE, Ostby, J, Furr, J, Price, M, Veeramachaneni, DNR, Parks, L. Perinatal exposure to the phthalates DEHP, BBP, and DINP, but Not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol Sci. 2000;58(2):350-365.
Google Scholar | Crossref | Medline26. Mylchreest, E, Cattley, RC, Foster, PM. Male reproductive tract malformations in rats following gestational and lactational exposure to di(n-butyl) phthalate: an antiandrogenic mechanism? Toxicol Sci. 1998;43(1):47-60.
Google Scholar | Crossref | Medline27. Mylchreest, E, Sar, M, Wallace, DG, Foster, PMD. Fetal testosterone insufficiency and abnormal proliferation of Leydig cells and gonocytes in rats exposed to di(n-butyl) phthalate. Reprod Toxicol. 2002;16(1):19-28.
Google Scholar | Crossref | Medline28. Kilcoyne, KR, Smith, LB, Atanassova, N, et al. Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells. Proc Natl Acad Sci U S A. 2014;111(18):E1924-E1932.
Google Scholar | Crossref | Medline29. Andersson, AM, Jørgensen, N, Frydelund-Larsen, L, Rajpert-De Meyts, E, Skakkebaek, NE. Impaired Leydig cell function in infertile men: a study of 357 idiopathic infertile men and 318 proven fertile controls. J Clin Endocrinol Metab. 2004;89(7):3161-3167.
Google Scholar | Crossref | Medline30. Radke, EG, Braun, JM, Meeker, JD, Cooper, GS. Phthalate exposure and male reproductive outcomes: a systematic review of the human epidemiological evidence. Environ Int. 2018;121(pt 1):764-793.
Google Scholar | Crossref | Medline31. Swan, SH, Main, KM, Liu, F, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect. 2005;113(8):1056-1061.
Google Scholar | Crossref | Medline | ISI32. Picut, CA, Remick, AK, de Rijk, EP, Simons, ML, Stump, DG, Parker, GA. Postnatal development of the testis in the rat: morphologic study and correlation of morphology to neuroendocrine parameters. Toxicol Pathol. 2015;43(3):326-342.
Google Scholar | SAGE Journals | ISI33. Hutson, JM, Li, R, Southwell, BR, Petersen, BL, Thorup, J, Cortes, D. Germ cell development in the postnatal testis: the key to prevent malignancy in cryptorchidism? Front Endocrinol (Lausanne). 2012;3:176.
Google Scholar | Medline34. Cortes, D, Thorup, J, Visfeldt, J. Multinucleated spermatogonia in cryptorchid boys: a possible association with an increased risk of testicular malignancy later in life? APMIS. 2003;111(1):25-30; discussion 31.
Google Scholar | Crossref | Medline | ISI35. Skakkebaek, NE . Possible carcinoma-in-situ of the testis. Lancet. 1972;2(7776):516-517.
Google Scholar | Crossref | Medline36. National Toxicology Program . 2021. Accessed June 28, 2021. https://ntp.niehs.nih.gov/whatwestudy/testpgm/cartox/index.html.
Google Scholar37. Barlow, NJ, Foster, PMD. Pathogenesis of male reproductive tract lesions from gestation through adulthood following in utero exposure to di(n-butyl) phthalate. Toxicol Pathol. 2003;31(4):397-410.
Google Scholar | SAGE Journals | ISI38. Mahood, IK, Hallmark, N, McKinnell, C, Walker, M, Fisher, JS, Sharpe, RM. Abnormal Leydig cell aggregation in the fetal testis of rats exposed to di(n-butyl) phthalate and its possible role in testicular dysgenesis. Endocrinology. 2005;146(2):613-623.
Google Scholar | Crossref | Medline | ISI39. Hutchison, GR, Sharpe, RM, Mahood, IK, et al. The origins and time of appearance of focal testicular dysgenesis in an animal model of testicular dysgenesis syndrome: evidence for delayed testis development? Int J Androl. 2008;31(2):103-111.
Google Scholar | Crossref | Medline40. Joensen, UN, Jorgensen, N, Rajpert-De Meyts, E, Skakkebaek, NE. Testicular dysgenesis syndrome and Leydig cell function. Basic Clin Pharmacol Toxicol. 2008;102(2):155-161.
Google Scholar | Crossref | Medline41. Elmore, SA, Carreira, V, Labriola, CS, et al. Proceedings of the 2018 national toxicology program satellite symposium. Toxicol Pathol. 2018;46(8):865-897.
Google Scholar | SAGE Journals42. Elmore, SA, Cesta, MF, Crabbs, TA, et al. Proceedings of the 2019 national toxicology program satellite symposium. Toxicol Pathol. 2019;47(8):913-953.
Google Scholar | SAGE Journals43. Sharpe, RM . Pathways of endocrine disruption during male sexual differentiation and masculinization. Best Pract Res Clin Endocrinol Metab. 2006;20(1):91-110.
Google Scholar | Crossref | Medline44. Sharpe, RM, Skakkebaek, NE. Testicular dysgenesis syndrome: mechanistic insights and potential new downstream effects. Fertil Steril. 2008;89(1 suppl):e33-e38.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif